Automated construction of deep hierarchies using arbitrary clustering algorithms

Jeroen Tempels

23/12/2016

 

Automated construction of deep hierarchies

using arbitrary clustering algorithms [2]

Automated construction of deep hierarchies

using arbitrary clustering algorithms [2]

Automated construction of deep hierarchies

using arbitrary clustering algorithms [3] [4] [6] [7] [8]

Preprocessing

Sampling

Clustering

Feature extraction 

Linear classification algorithm

Automated construction of deep hierarchies

using arbitrary clustering algorithms [3] [4] [6] [7] [8]

Preprocessing

Sampling

Clustering

Feature extraction 

Linear classification algorithm

Automated construction of deep hierarchies

using arbitrary clustering algorithms [3] [4] [6] [7] [8]

Preprocessing

Sampling

Clustering

Feature extraction 

Linear classification algorithm

Automated construction of deep hierarchies

using arbitrary clustering algorithms [3] [4] [6] [7] [8]

Preprocessing

Sampling

Clustering

Feature extraction 

Linear classification algorithm

Automated construction of deep hierarchies

using arbitrary clustering algorithms [3] [4] [5] [6] [7] [8]

Preprocessing

Sampling

Clustering

Feature extraction 

Linear classification algorithm

  • Prototype model
  • Connectivity model
  • Graph model

Automated construction of deep hierarchies

using arbitrary clustering algorithms [3] [4] [6] [7] [8]

Preprocessing

Sampling

Clustering

Feature extraction 

Linear classification algorithm

Automated construction of deep hierarchies

using arbitrary clustering algorithms [1] [3] [4]

Pipeline

  • amount of layers
  • clusters per layer
  • ...

Results

  • Working implementation
  • Most time spent on implementation
  • 73% (should get 78%)

Future Work

  1. Abstract k-means into any clustering
  2. Try cluster validity indices
  3. Test correlation parameters with CVI's
  4. Find optimal CVI (performance, speed,...)
  5. (Optional) Try other heuristics

References

Made with Slides.com