Júlia Komjáthy
joint with Joost Jorritsma, Dieter Mitsche
Random Discrete Structures
March 2023
Papers: tiny.cc/cluster-size-ksrg
[Grimmett & Marstrand '90, Kesten & Zhang '90]
Hyperbolic random graph
Scale-free percolation
Long-range percolation
Age-dependent RCM
Random geom. graph
Nearest-neighbor percolation
Vertex set \(\mathcal{V}_\infty\)
Edge set \(\mathcal{E}_\infty\)
Connection probability
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta\frac{\kappa(w_u, w_v)}{\|x_u-x_v\|^d}\bigg)^\alpha\wedge 1$$
Vertex set \(\mathcal{V}_\infty\)
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta\frac{\kappa(w_u, w_v)}{\|x_u-x_v\|^d}\bigg)^\alpha$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{\bigg(\beta}\frac{\kappa(w_u, w_v)}{\phantom{\|x_u-x_v\|^d}}\phantom{\bigg)^\alpha\wedge 1}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{\bigg(\beta}\frac{\kappa(w_u, w_v)}{\|x_u-x_v\|^d}\phantom{\bigg)^\alpha\wedge 1}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\phantom{\beta}\frac{\kappa(w_u, w_v)}{\|x_u-x_v\|^d}\bigg)^\alpha\phantom{\wedge 1}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)$$
Vertex set \(\mathcal{V}_\infty\)
Edge set \(\mathcal{E}_\infty\)
Connection probability
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta\frac{\kappa(w_u, w_v)}{\|x_u-x_v\|^d}\bigg)^\alpha\wedge 1$$
Vertex set \(\mathcal{V}_\infty\)
Edge set \(\mathcal{E}_\infty\)
Connection probability
$${\color{grey}\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta}\frac{\kappa(w_u, w_v)}{\color{grey}\|x_u-x_v\|^d}{\color{grey}\bigg)^\alpha\wedge 1}$$
A parameterized kernel: \(\sigma\ge 0\)
$$\kappa_{\sigma}(w_u, w_v):=\max\{w_u, w_v\}\min\{w_u, w_v\}^\sigma$$
SFP/GIRG
Hyperbolic RG
Age-dep. RCM
Scale-free Gilbert
Long-range percolation
Random geom. graph
Nearest-neighbor percolation
Theorem. When \(\tau>2\):
Theorem. When \(\tau<2\):
$$\mathbb{P}(\mathrm{deg}(0)\ge k)\sim k^{-(\tau_\mathrm{deg}-1)}.$$
[Deijfen, v.d. Hofstad, Hooghiemstra '13]
[Gracar, Grauer, Lüchtrath, Mörters '18]
[Heydenreich, Hulshof, Jorritsma '17]
[Hirsch '17]
[v.d. Hofstad, v.d. Hoorn, Maitra, '22]
[Jorritsma, K., Mitsche, '23]
[Lüchtrath '22]
Theorem. When \(\tau<2\):
Theorem. When \(\tau>2\):
$${\color{grey}\mathbb{P}(\mathrm{deg}(0)\ge k)\sim k^{-(\tau_\mathrm{deg}-1)}.}$$
Questions
[Alexander & Chayes & Chayes '90, Grimmett (& Marstrand),
Kesten & Zhang '90,
...,
Lichev, Lodewijks, Mitsche, Schapira '22,
Penrose '05]
[Sly & Crawford'12]
[Kiwi & Mitsche '17]
When \(\tau>2\), there exists \(\zeta\in(0,1)\) s.t.
When \(\tau>2\), there exists \(\zeta\in(0,1)\) s.t.
Only four possible values
When \(\tau>2\), there exists \(\zeta\in(0,1)\) s.t.
Only four possible values
\(d=1\): \(\qquad\zeta_\mathrm{nn}>\max\{\zeta_\mathrm{ll}, \zeta_\mathrm{lh}, \zeta_\mathrm{hh}\}\quad \Longrightarrow\quad \)subcritical
[Gracar, Mönch, Lüchtrath '22]
Consider supercritical interpolating model, \(\sigma\le\tau-1\).
If \(\zeta_\mathrm{nn}\) is not the unique maximum of \(Z:=\{\zeta_\mathrm{ll}, \zeta_\mathrm{lh}, \zeta_\mathrm{hh}, \zeta_\mathrm{nn}\}\):
If \(\zeta_\mathrm{nn}\) is the unique maximum of \(Z\), \(d>1\):
$$d=2\\\alpha=1.6$$
(2)
(4)
(1)
(3)
Aim: Find minimal \(\zeta\) s.t.
Isolation events
Aim: Find minimal \(\zeta\) s.t.
Isolation costs (vertices)
Aim: Find minimal \(\zeta\) s.t.
Isolation costs (edges)
Possible optimizers
Edges, vertices
Aim: Find minimal \(\zeta\) s.t.
Conclusion:
Aim: Find minimal \(\zeta\) s.t.
nn
ll
lh
hh
Consider supercritical interpolating model, \(\sigma\le\tau-1\).
If \(\zeta_\mathrm{nn}\) is not the unique maximum of \(Z:=\{\zeta_\mathrm{ll}, \zeta_\mathrm{lh}, \zeta_\mathrm{hh}, \zeta_\mathrm{nn}\}\):
Reveal graph in stages.
Three techniques: \(\zeta_\mathrm{ll}, \zeta_\mathrm{lh}\), and \(\zeta_\mathrm{hh}\):
No control short edges/local geometry:
no upper bound (nn)
Prevent too large components
Consider supercritical interpolating model, \(\sigma\le\tau-1\).
If \(\zeta_\mathrm{nn}\) is not the unique maximum of \(Z:=\{\zeta_\mathrm{ll}, \zeta_\mathrm{lh}, \zeta_\mathrm{hh}, \zeta_\mathrm{nn}\}\)
If \(\zeta_\mathrm{nn}\) is the unique maximum of \(Z\), \(d>1\):
\(\zeta_\mathrm{ll}=2-\alpha, \qquad \zeta_\mathrm{lh}=\frac{\tau-1}{\alpha}-(\tau-2), \qquad \zeta_\mathrm{hh}=\frac{3-\tau}{2-(\tau-1)/\alpha}, \qquad \zeta_\mathrm{nn}=\frac{d-1}d\)
Aim: Maximize \(\zeta\) s.t.
When \(n\le\exp\big(-\tfrac12k^{\zeta}\big)\)
When \(k=k_n=(2\log(n))^{1/\zeta}\)
Reveal graph in stages.
Three techniques: \(\zeta_\mathrm{ll}, \zeta_\mathrm{lh}\), and \(\zeta_\mathrm{hh}\):
No control short edges/local geometry:
no upper bound (nn)
Aim: Find minimal \(\zeta\) s.t.
Isolation costs (edges)
Possible optimizers