Joost Jorritsma, PhD
Florence Nightingale Bicentennial Fellowship
Research talk
Erdős–Rényi Random Graph
Nearest-Neighbour Percolation on \(\mathbb{Z}^d\)
Motivation
Inhomogeneous Percolation
Preferential attachment
FINAL SIZE
~1969: 2 connected sites
Time
~1989: 0.5 million users
~2023: billions of devices
~1999: 248 million users
1999
\(\mathrm{dist}_{\color{red}{'99}}(u_{'99}, v_{'99}) = 4\)
2005
\(\mathrm{dist}_{{\color{red}'05}}(u_{'99}, v_{'99}) = 3\)
2023
\(\mathrm{dist}_{{\color{red}'23}}(u_{'99}, v_{'99}) = 2\)
21 possible networks
Attachment rule:
Favour connecting to high-degree vertices, \(\tau\): tail of power-law degree distribution
2005
\(\phantom{\mathrm{dist}_{{\color{red}'05}}(u_{'99}, v_{'99}) = 3}\)
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \mathbb{P}\bigg(\sup_{a\in[0,1]} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|>\varepsilon\bigg)\longrightarrow 0.$$
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \phantom{\mathbb{P}\bigg(}\phantom{\sup_{a\in[0,1]}} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|\phantom{>\varepsilon\bigg)\phantom{\longrightarrow} 0.}$$
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(\phantom{t'=T_t(a):=t\exp\big(\log^a(t)\big)}\) for \(\phantom{a\in[0,1]}\), then
$$ \phantom{\sup_{a\in[0,1]} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|\overset{\mathbb{P}}{\longrightarrow} 0.}$$
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \phantom{\mathbb{P}\bigg(}\phantom{\sup_{a\in[0,1]}} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - \phantom{(1-a)\frac{4}{|\log(\tau-2)|}}\right|\phantom{>\varepsilon\bigg)\longrightarrow 0.}$$
Dynamics in PAMs.
Generalization with edge weights: random transmission times
Novelties
Fast spreading among influentials;
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \mathbb{P}\bigg(\sup_{a\in[0,1]} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|>\varepsilon\bigg)\phantom{\longrightarrow 0.}$$
FINAL SIZE
Large deviations (rare events) of cluster sizes:
What is the influence of long edges and high-degree vertices?
Hyperbolic random graph
Scale-free percolation
Long-range percolation
Soft Poisson-Boolean model
Random geom. graph
Nearest-neighbour percolation
Only four parameters
Vertex set
Edge more likely if
Questions
Theorem [J., Komjáthy, Mitsche, '23+]
We find explicit \(\zeta\in[1/2,1)\), \(\theta\in(0,1)\) s.t.
Novelties
Reversed discrepancy: slower upper tail.
Long edges can beat surface tension: any ;
First (upper) LDP for giant in spatial graph;
drives also other cluster-size distributions
FINAL SIZE
Joost Jorritsma, PhD
Florence Nightingale Bicentennial Fellowship
Research talk
[Grimmett & Marstrand '90, Kesten & Zhang '90, Pisztora '96]
[Lebowitz & Schonmann '88]
What is the influence of long edges and high-degree vertices?
Lower tail: small final size
Upper tail: large final size
Edge set \(\mathcal{E}_\infty\)
Connection probability
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta\frac{\kappa(w_u, w_v)}{\|x_u-x_v\|^d}\bigg)^\alpha\wedge 1$$
Vertex set \(\mathcal{V}_\infty\)
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta\frac{\kappa(w_u, w_v)}{\|x_u-x_v\|^d}\bigg)^\alpha$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{\bigg(\beta}\frac{\kappa(w_u, w_v)}{\phantom{\|x_u-x_v\|^d}}\phantom{\bigg)^\alpha\wedge 1}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{\bigg(\beta}\frac{\kappa(w_u, w_v)}{\|x_u-x_v\|^d}\phantom{\bigg)^\alpha\wedge 1}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\phantom{\beta}\frac{\kappa(w_u, w_v)}{\|x_u-x_v\|^d}\bigg)^\alpha\phantom{\wedge 1}$$
Questions
Aim: Find minimal \(\zeta\) s.t.
Aim: Find \(\gamma\) s.t.
# possibilities for \(|{\color{red}2^{\mathrm{nd}}\text{-largest}}|\ge k\)