Joost Jorritsma
PhD Defense
Problem: Unknown network dynamics involved
Solution: Random graph
Goals: Understand networks
+ spreading model
Problem:
Unknown network dynamics involved
Solution:
Random graph
Goals:
Understand networks Fascinating math
+ spreading model
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
MODELS
RESULTS Fascinating, because...
FINAL SIZE
~1969: 2 connected sites
Time
~1989: 0.5 million users
~2023: billions of devices
~1999: 248 million users
1999
\(\mathrm{dist}_{\color{red}{'99}}(u_{'99}, v_{'99}) = 4\)
2005
\(\mathrm{dist}_{{\color{red}'05}}(u_{'99}, v_{'99}) = 3\)
2023
\(\mathrm{dist}_{{\color{red}'23}}(u_{'99}, v_{'99}) = 2\)
21 possible networks
Attachment rule:
Favour connecting to high-degree vertices
2005
\(\phantom{\mathrm{dist}_{{\color{red}'05}}(u_{'99}, v_{'99}) = 3}\)
Theorem [J., Komjáthy '22]. Assume \(c_\tau<0\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \mathbb{P}\bigg(\sup_{a\in[0,1]} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|>0.001\bigg)\longrightarrow 0.$$
Theorem [J., Komjáthy '22]. Assume \(c_\tau<0\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \phantom{\mathbb{P}\bigg(}\phantom{\sup_{a\in[0,1]}} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|\phantom{>0.001\bigg)\phantom{\longrightarrow} 0.}$$
Theorem [J., Komjáthy '22]. Assume \(c_\tau<0\).
Let \(\phantom{t'=T_t(a):=t\exp\big(\log^a(t)\big)}\) for \(\phantom{a\in[0,1]}\), then
$$ \phantom{\sup_{a\in[0,1]} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|\overset{\mathbb{P}}{\longrightarrow} 0.}$$
Theorem [J., Komjáthy '22]. Assume \(c_\tau<0\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \phantom{\mathbb{P}\bigg(}\phantom{\sup_{a\in[0,1]}} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - \phantom{(1-a)\frac{4}{|\log(\tau-2)|}}\right|\phantom{>0.001\bigg)\longrightarrow 0.}$$
Dynamics in PAMs.
Stochastic process becomes deterministic;
Fast spreading among influentials;
Fascinating, because
Theorem [J., Komjáthy '22]. Assume \(c_\tau<0\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \mathbb{P}\bigg(\sup_{a\in[0,1]} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|>0.001\bigg)\phantom{\longrightarrow 0.}$$
MODELS
FINAL SIZE
RESULTS Fascinating, because...
FINAL SIZE
Only four parameters
Vertex set
Edge more likely if
FINAL SIZE
FINAL SIZE
FINAL SIZE
Three questions
FINAL SIZE
Structural information.
3 related quantities;
Not only ;
Fascinating, because
FINAL SIZE
Answers: there is \(\zeta\in(0,1)\) s.t.
MODELS
FINAL SIZE
RESULTS Fascinating, because...
Joost Jorritsma
PhD Defense
TOTAL SIZE
[Krioukov et al., '10]: Hyperbolic random graph
Good model for real networks
Little known about components.
Three sources of randomness;
Generalizes previous models;
Fascinating, because
Four parameters to interpolate/switch
Vertex set
Edge more likely if
TOTAL SIZE