Joost Jorritsma
joint with Júlia Komjáthy, Dieter Mitsche
Papers: tiny.cc/cluster-size-ksrg
[Grimmett & Marstrand '90, Kesten & Zhang '90]
[Grimmett & Marstrand '90, Kesten & Zhang '90]
Hyperbolic random graph
Scale-free percolation
Long-range percolation
Scale-free Gilbert RG
Random geom. graph
Nearest-neighbor percolation
Vertex set \(\mathcal{V}_\infty\)
Edge set \(\mathcal{E}_\infty\)
Connection probability
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=p\bigg(\frac{\beta}{\|x_u-x_v\|^d}\wedge 1\bigg)^\alpha$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{p}\bigg(\frac{\beta}{\|x_u-x_v\|^d}\wedge 1\bigg)^\alpha$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{p}\bigg(\frac{\beta}{\|x_u-x_v\|^d}\wedge 1\bigg)^\alpha$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{p}\bigg(\frac{\beta}{\|x_u-x_v\|^d}\phantom{\wedge 1}\bigg)^\alpha$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{p\bigg(}\frac{1}{\|x_u-x_v\|^d}\phantom{\bigg)^\alpha\wedge 1}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{p}\bigg(\frac{1}{\|x_u-x_v\|^d}\phantom{\wedge 1}\bigg)^\alpha$$
Vertex set \(\mathcal{V}_\infty\)
Edge set \(\mathcal{E}_\infty\)
Connection probability
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=p\bigg(\frac{\beta\cdot \phantom{(w_u\cdot w_v)}}{\|x_u-x_v\|^d}\wedge 1\bigg)^\alpha$$
Vertex set \(\mathcal{V}_\infty\)
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=p\bigg(\frac{\beta\cdot (w_u\cdot w_v)}{\|x_u-x_v\|^d}\wedge 1\bigg)^\alpha$$
Edge set \(\mathcal{E}_\infty\)
Connection probability
Vertex set \(\mathcal{V}_\infty\)
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=p\bigg(\frac{\beta\cdot (w_u\cdot w_v)}{\|x_u-x_v\|^d}\wedge 1\bigg)^\alpha$$
Questions
Questions
[Alexander & Chayes & Chayes '90], [Grimmett & Marstrand, '90], [Kesten & Zhang '90], ..., [Deuschel, Pisztora, '96], [Biskup '04], [Penrose '05], [Sly & Crawford'12], [Kiwi & Mitsche '17], [Lichev, Lodewijks, Mitsche, Schapira '22], [Bläsius, Friedrich, Ruff, Zeiff, '23]
Theorem. Long-range percolation (J., Komjáthy, Mitsche '24+)
Set \(\zeta_\ast := \max\{\zeta_\mathrm{long}, (d-1)/d\}\), with \(\zeta_\mathrm{long}=2-\alpha\).
If \(d=1\) and \(\zeta_\ast>0\).
If \(d\ge2\), and
\(0<\zeta_\mathrm{long}\le(d-1)/d\).
\(\zeta_\mathrm{long}>(d-1)/d\).
\(\zeta_\mathrm{long}\le(d-1)/d\), and \(p\) or \(\beta\) large.
Conjecture.
Theorem. Geom. Inhom. RG (J., Komjáthy, Mitsche '24+)
Set \(\zeta_\ast := \max\{\zeta_\mathrm{long}, (d-1)/d\}\), with \(\zeta_\mathrm{long}=\max\Big\{2-\alpha, \frac{3-\tau}{2-(\tau-1)/\alpha}\Big\}\).
If \(d=1\) and \(\zeta_\ast>0\).
If \(d\ge2\), and
\(0<\zeta_\mathrm{long}\le(d-1)/d\).
\(\zeta_\mathrm{long}>(d-1)/d\).
\(\zeta_\mathrm{long}\le(d-1)/d\), and \(p\) or \(\beta\) large.
Conjecture.
Aim: Find minimal \(\zeta\) s.t.
Aim: Find \(\gamma\) s.t.
Aim: Find minimal \(\zeta\) s.t.
Aim: Find \(\gamma\) s.t.
(FKG)
\(\delta\) small
# possibilities for \(|{\color{red}2^{\mathrm{nd}}\text{-largest}}|\ge k\)
Truncation
Local convergence: giant is almost local
\(m_n\sim n^{2-\alpha}\) boxes
\(m_n\sim n^{2-\alpha}\) boxes
Description of weight distribution in large components
Prevent "small-to-large" merging
Answered questions (\(d=1\))
# hubs (\(w_v\sim n\)) required: increase density from \(\vartheta\) to \(\vartheta+\varepsilon\)
Open problems:
Answered questions (\(d=1\))
Small
Large
Remarks.
Power-law degrees: \(\tau>2\)
\(d\ge 2\)
* [Gracar, Lüchtrath, Mönch '22]
Theorem. (J., Komjáthy, Mitsche '23+)
Set
If \(\zeta_\ast>0\), then LLN for \(|{\color{blue}\text{largest}}|\), and
Long-range parameter: \(\alpha>1\)
Example 2:
Geom. Inhomog. RG in \(d=1\)