A generalized semi-supervised elastic-net
Juan C. Laria
juancarlos.laria@uc3m.es
The semi-supervised framework
unsupervised
The semi-supervised framework
supervised
The semi-supervised framework
semi-supervised
The semi-supervised framework
semi-supervised
transfer-model
Elastic-net regularization
lasso
ridge
Joint trained elastic-net
Culp, M. (2013). On the semisupervised joint trained elastic net. Journal of Computational and Graphical Statistics 22 (2), 300–318.
Extended linear joint trained framework
Søgaard Larsen, J. et. al (2020). Semi-supervised covariate shift modelling of spectroscopic data. (in-press)
Semi-supervised elastic-net
Optimization
elastic-net with custom loss function
Implementation
We develop a flexible and fast implementation for s2net in R, written in C++ using RcppArmadillo and integrated into R via Rcpp modules.
The software is available in the s2net package
install.packages("s2net")
library(s2net)
vignette(package = "s2net")
Hyper-parameter tuning
library(cloudml)
cloudml_train("main_script.R", config = "tuning.yml")
FLAGS <- flags(
flag_numeric("lambda1", 0.01, "Lasso weight"),
flag_numeric("lambda2", 0.01, "Ridge weight"),
flag_numeric("gamma1", 0.1, "s2net global weight"),
flag_numeric("gamma2", 100, "s2net covariance parameter"),
flag_numeric("gamma3", 0.5, "s2net shift parameter")
)
Hyper-parameter tuning
library(sparklyr)
result = spark_apply(grid, my_function, context = datos)