What is the Cellular Potts Model?

 

Julien

\Delta U_P = \lambda_P \left( P - P_0 \right)^2
ΔUP=λP(PP0)2\Delta U_P = \lambda_P \left( P - P_0 \right)^2
\frac{d\vec{p}}{dt} = r \left[ -\vec{p} + \epsilon \frac{R}{\sigma_R} \vec{q} \right]
dpdt=r[p+ϵRσRq]\frac{d\vec{p}}{dt} = r \left[ -\vec{p} + \epsilon \frac{R}{\sigma_R} \vec{q} \right]
\vec{p}
p\vec{p}
\vec{q}
q\vec{q}
A \approx 315 \ \ \ \ r \approx 10
A315    r10A \approx 315 \ \ \ \ r \approx 10
\frac{100 \ \text{ng Dextran}}{10 \ \text{mm}\cdot\text{mL}} = 0.25 \frac{\text{nM}}{\text{mm}}
100 ng Dextran10 mmmL=0.25nMmm\frac{100 \ \text{ng Dextran}}{10 \ \text{mm}\cdot\text{mL}} = 0.25 \frac{\text{nM}}{\text{mm}}
Made with Slides.com