What is the Cellular Potts Model?
Julien
\Delta U_P = \lambda_P \left( P - P_0 \right)^2
Δ
U
P
=
λ
P
(
P
−
P
0
)
2
\Delta U_P = \lambda_P \left( P - P_0 \right)^2
Δ
U
P
=
λ
P
(
P
−
P
0
)
2
\frac{d\vec{p}}{dt} = r \left[ -\vec{p} + \epsilon \frac{R}{\sigma_R} \vec{q} \right]
d
p
⃗
d
t
=
r
[
−
p
⃗
+
ϵ
R
σ
R
q
⃗
]
\frac{d\vec{p}}{dt} = r \left[ -\vec{p} + \epsilon \frac{R}{\sigma_R} \vec{q} \right]
d
t
d
p
⃗
=
r
[
−
p
⃗
+
ϵ
σ
R
R
q
⃗
]
\vec{p}
p
⃗
\vec{p}
p
⃗
\vec{q}
q
⃗
\vec{q}
q
⃗
A \approx 315 \ \ \ \ r \approx 10
A
≈
3
1
5
r
≈
1
0
A \approx 315 \ \ \ \ r \approx 10
A
≈
3
1
5
r
≈
1
0
\frac{100 \ \text{ng Dextran}}{10 \ \text{mm}\cdot\text{mL}} = 0.25 \frac{\text{nM}}{\text{mm}}
1
0
0
n
g
D
e
x
t
r
a
n
1
0
m
m
⋅
m
L
=
0
.
2
5
n
M
m
m
\frac{100 \ \text{ng Dextran}}{10 \ \text{mm}\cdot\text{mL}} = 0.25 \frac{\text{nM}}{\text{mm}}
1
0
m
m
⋅
m
L
1
0
0
n
g
D
e
x
t
r
a
n
=
0
.
2
5
m
m
n
M
Made with Slides.com