coordinates allow us to create decision boundaries for classification problems
i,e, nodes that share many connections should have similar embeddings
Why
Example
Intuition
Framing the problems
Message function
Message function examples
Aggregation function
aggregate all the messages from the neighborhood of i
Aggregation function properties
Aggregation function examples
Update function
Update function examples
Architecture examples - GCN
Examples in code - GraphSage
Examples
Examples
Examples
Examples
Examples
Overall Architecture
Graph Pooling
Graph Pooling with Set Pooling
Graph Pooling with Coarsening
H. Gao, S. Ji: Graph U-Nets [link]
Nuances of Graph Batching
The batched “super-graph”
Batching and Reading Out Ops [link]
The batched “super-graph”
Graph Classification Exercise
Deep Graph Library (DGL)
DGL 1.0 release
dgl blog [link]
DGL 2.0 release
dgl blog [link]
Useful APIs and data structures
PyTorch Geometric (PyG)
Built on top of PyTorch
New(er) comers
Open Graph Benchmark
OGB [link]
The problem(s)
Sampling
Node-level Sampling
W. L. Hamilton, R. Ying, J. Leskovec: Inductive Representation Learning on Large Graphs [link]
J. Chen, T. Ma, C. Xiao: FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling [link]
D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, Q. Gu: Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks [link]
Subgraph sampling
Pre-computation
M. Chen, Z. Wei, Z. Huang, B. Ding, Y. Li: Simple and Deep Graph Convolutional Networks [link]
F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, F. Monti: SIGN: Scalable Inception Graph Neural Networks [link]
H. Wang, Z. Wei, J. Gan, S. Wang, Z. Huang: Personalized PageRank to a Target Node, Revisited [pdf]
Resource management
M. Fey, Jan E. Lenssen, F. Weichert, J. Leskovec: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings [link]
Z. Jia, S. Lin, M. Gao, M. Zaharia, A. Aiken: Improving the accuracy? scalability, and perfomance of graph neural networks with ROC [pdf]
V. Md, S. Misra, G. Ma, R. Mohanty, E. Georganas, A. Heinecke, D. Kalamkar, N. K. Ahmed, S. Avancha: DistGNN: Scalable Distributed Training for Large-Scale Graph Neural Networks [link]