Sheep update

Discussion goals

  • Sheep study progress
  • Objectives under current funding
  • How to package / approach existing data

What we've done

(2013-Present)

1. Basic description

Cassirer et al. 2013 JAE

2. Acquired immunity

Plowright et al., 2013 PLoS One

3. Social compartmentalization

Manlove et al., 2014 PRSB

4. Persistence / phase transition

Manlove et al., almost in review

5. Who carries in the wild?

Plowright et al., in prep

6. New strain produces all-age die-off in infected herd

Cassirer et al., in prep

Current MAF Objectives

Objective 1

-ID groups with poor outcomes (Manlove et al., PRSB)

-Inference on carriage rates through time

-ID individual M.ovi carriers (Raina @ Lostine; Frances @ Asotin, Black Butte, Mtn View

- Ewe-group structure / contact patterns (Manlove field data)

        -> "vert" vs. "horizontal" transmission

        -> force of infection from different demographic groups

- Risk factor analysis

 

Objective 2: Mechanistic models of carrier etiology

 

Objective 3: Modeling control strategies

(Plowright et al., 2012 - May 2016)

Sheep society in the wild

Overview

Goal

Quantify social dynamics of bighorn nursery groups with disease

  • Associations (who's in a group together)
  • Interactions (who touches who)
  • Disease progression (symptoms + mortalities)

 

Methods

  1. Marked/sampled as many animals as possible overwinter (Frances)
  2. Followed up from ~April 20 - July 15
    • Locate everybody every day
    • Determine lamb status 
    • Focal follows & scan samples  
    • Symptoms & carcass recovery                                           

Data collected

Pop Year # Marked (total) # relocations # follows / ID'd animals followed Disease Status
Asotin 2013 12 / 32 554 infected no transmission
2014 17 / 25 1135 191 / 883 infected no transmission
2015 23 / 28 1444 239 / 1095 infected no transmission
Black Butte 2013 4 / 13 124 Outbreak
2014 11 / 13 (all recognizable) 718 155 / 581 New strain
Mtn View 2015
13 / 30 516 191 / 548 infected / no transmission
Breaks 2015 31 / 300 303 infected / no transmission

Asotin sampling intensity, 2014

Association networks

(edges = 2 animals in same place at same time)

Interaction network

(direct contacts)

Associations always high, but non-lamb interactions rare

Fission-fusion dynamics

Group sizes and structures

Lamb epidemics

Can we use social network data to draw inference about strength of different potential reservoirs?

Naive model

R = 1 + \lambda\nu + f(1-f)(\lambda\mu)^{2}
R=1+λν+f(1f)(λμ)2R = 1 + \lambda\nu + f(1-f)(\lambda\mu)^{2}
\lambda = \frac{ln[Y(t)]}{t} = \text{rate of exp.growth}
λ=ln[Y(t)]t=rate of exp.growth\lambda = \frac{ln[Y(t)]}{t} = \text{rate of exp.growth}
\nu = \text{serial interva: latent + infectiousl}
ν=serial interva: latent + infectiousl\nu = \text{serial interva: latent + infectiousl}
f = \text{ratio of mean of latent period to serial interval}
f=ratio of mean of latent period to serial intervalf = \text{ratio of mean of latent period to serial interval}
\nu = \text{Serial interval = latent + infectious}
ν=Serial interval = latent + infectious\nu = \text{Serial interval = latent + infectious}

Slope ~ 0.32

Serial interval ~ 25 days (10 + 15)

f ~ 2/5

P(mort) \sim \beta_0 + \beta_{Ewes} X_{ewes} + \beta_{YrEwes}X_{YrEwes} + \beta_{DryEwes}X_{DryEwes} + \epsilon
P(mort)β0+βEwesXewes+βYrEwesXYrEwes+βDryEwesXDryEwes+ϵP(mort) \sim \beta_0 + \beta_{Ewes} X_{ewes} + \beta_{YrEwes}X_{YrEwes} + \beta_{DryEwes}X_{DryEwes} + \epsilon
X_{Ewes} = \text{Sum of edgeweights to infected ewes}
XEwes=Sum of edgeweights to infected ewesX_{Ewes} = \text{Sum of edgeweights to infected ewes}
P(mort) \sim \beta_0 + \beta_{Ewes} X_{ewes} + \beta_{YrEwes}X_{YrEwes} + \beta_{DryEwes}X_{DryEwes} + \epsilon
P(mort)β0+βEwesXewes+βYrEwesXYrEwes+βDryEwesXDryEwes+ϵP(mort) \sim \beta_0 + \beta_{Ewes} X_{ewes} + \beta_{YrEwes}X_{YrEwes} + \beta_{DryEwes}X_{DryEwes} + \epsilon
X_{Ewes} = \text{Sum of edgeweights to infected ewes}
XEwes=Sum of edgeweights to infected ewesX_{Ewes} = \text{Sum of edgeweights to infected ewes}

Can we use information on time-varying contact rates to separate infection risk from chronic adults vs. infection risk from acute lambs?

Bipartite networks

Made with Slides.com