Kian Paimani
Zakarias Nordfäldt-Laws
May 2018
PERFORMANCE ENGINEERING
Gradient Descent - Logistic Regression
Learning Rate
Gradient Descent
Gradient Descent -> ADAM
Gradient Descent Applications
Reference Implementation
for (i=1; i<iterations+1; i++){
for(z=0; z<length; z+=batch_size) {
update_gradient_batch(/* ... */);
for (n = 0; n < dim; n++) {
/* Eventually, update the weight */
par->weights[n] += (alpha * m_hat) / (sqrt(r_hat) + eps);
}
}
}
void update_gradients_batch(){
for(i=start; i<start+batch_size; i++){
for (n=0; n<dim; n++) {
/* 1. Make a prediction */
/* 2. Compute error */
/* 3. Calculate gradient using the cost function */
}
}
}
Analytical Model
Analytical Model
Analytical Model
Iteration over all data
Setup
Finalize
Small Batch_size
Large Batch_size
Analytical Model
Analytical Model
Analytical Model