Digital audio primer

  • digital vs analogue

  • sampling theorem

  • aliasing

  • sample rate

  • time resolution

  • quantisation

  • dithering

  • encoding

Digital

vs

Analogue

Sampling Theorem

If a function \( x(t) \) contains no frequencies higher than \( \textbf{B} \) hertz, it is completely determined by giving its ordinates at a series of points spaced \( \frac{1}{2\textbf{B}} \) seconds apart.

f_s \geq 2B
fs2Bf_s \geq 2B

Aliasing

Sample Rate

44,100

Hz

(WTF?)

2^2 \cdot 3^2 \cdot 5^2 \cdot 7^2
223252722^2 \cdot 3^2 \cdot 5^2 \cdot 7^2
...\int e ^xy
...exy...\int e ^xy

NTSC

PAL

245 active lines/field × 60 fields/second × 3 samples/line = 44,100 samples/second

490 active lines per frame, out of 525 lines total

294 active lines/field × 50 fields/second × 3 samples/line = 44,100 samples/second

588 active lines per frame, out of 625 lines total

Time Resolution

Quantisation

SQNR = 1.76+20\log_{10}(2^N)
SQNR=1.76+20log10(2N)SQNR = 1.76+20\log_{10}(2^N)
SQNR\approx 1.76 + 6.02 \cdot N \text{ dB}
SQNR1.76+6.02N dBSQNR\approx 1.76 + 6.02 \cdot N \text{ dB}

Dithering

Encoding

8 bit = \( 2 ^ 8 \) = 256 possible values

16 bit = \(2^{16}\) = 65,536 possible values

24 bit = \( 2 ^ {24} \) = 16,777,216 possible values

32 bit floating point

frequency content \(\propto\) sample rate

dynamic range \(\propto\) bit depth

?

simple.industries

acaprojects.com

Made with Slides.com