Boris Khesin
University of Toronto
Gerard Misiolek
University of Notre Dame
Euler's equations for inviscid incompressible fluid on \(M\)
Arnold (1966): diffeomorphism \(\varphi(t)\) generated by \(u(t)\) is geodesic curve on \(\mathrm{Diff}_\mu(M)\) w.r.t. \[ G_\varphi(\dot\varphi,\dot\varphi) = \int_M |\dot\varphi|^2 \mu \]
Led to geometric and topological hydrodynamics
\(\Rightarrow\) stability results (Arnold and Khesin)
\(\Rightarrow\) well-posedness results (Ebin and Marsden)
Aim: extend Arnold's framework
Ingredients:
\(\mathrm{Diff}_\mu(M)\) symmetry:
Moser 1965:
Principal bundle
\(L^2\) metric on \(\mathrm{Diff}(M)\)
Induces Otto metric
Smooth probability densities
Induced potential function
Poisson reduction
Symplectic reduction
Gives compressible (barotropic) Euler equations
\(\displaystyle P(\rho) = e'(\rho)\rho^2\) is the pressure function
"Potential solutions" \(u = \nabla\theta\) \(\Rightarrow\) horizontal solutions
Consider horizontal solutions \(\Rightarrow\) system on \(T^*\mathrm{Dens}(M)\)
Fisher functional
From \((\varrho,\theta)\in T^*\mathrm{Dens}(M)\) construct wave function
Theorem (Madelung 1927, von Renesse 2011):
Wave function fulfills (nonlinear) Schrödinger equation \[ i\dot\psi + \Delta\psi - f(|\psi|^2)\psi=0\]
Madelung transform
Theorem: Madelung transform induces symplectomorphism \[ \Phi\colon T^*\mathrm{Dens}(M)\to PC^\infty(M,\mathbb{C}\backslash\{0\})\] (Fréchet topology of smooth functions)
Geometric quantum mechanics (Kibble 1979):
wave function \(\Rightarrow\) element of complex projective space
Kähler manifold
Theorem: Madelung transform induces Kähler morphism \[ \Phi\colon T^*\mathrm{Dens}(M)\to PC^\infty(M,\mathbb{C}\backslash\{0\})\] (Fréchet topology of smooth functions)
Is Madelung transform isometry?
Canonical metric on \(PC^\infty(M,\mathbb{C})\): Fubini-Study metric
Fisher-Rao metric on \(\mathrm{Dens}(M)\):
Sasaki-Fisher-Rao metric
on \(T^*\mathrm{Dens}(M)\):
Geometric hydrodynamics via Madelung transform,
PNAS, 2018
Geometry of the Madelung transform,
arXiv preprint, 2018
Slides available at: slides.com/kmodin