Boris Khesin
University of Toronto
Gerard Misiolek
University of Notre Dame
Euler's equations for inviscid incompressible fluid on M
Arnold (1966): diffeomorphism φ(t) generated by u(t) is geodesic curve on Diffμ(M) w.r.t. Gφ(φ˙,φ˙)=∫M∣φ˙∣2μ
Led to geometric and topological hydrodynamics
⇒ stability results (Arnold and Khesin)
⇒ well-posedness results (Ebin and Marsden)
Aim: extend Arnold's framework
Ingredients:
Diffμ(M) symmetry:
Moser 1965:
Principal bundle
L2 metric on Diff(M)
Induces Otto metric
Smooth probability densities
Induced potential function
Poisson reduction
Symplectic reduction
Gives compressible (barotropic) Euler equations
P(ρ)=e′(ρ)ρ2 is the pressure function
"Potential solutions" u=∇θ ⇒ horizontal solutions
Consider horizontal solutions ⇒ system on T∗Dens(M)
Fisher functional
From (ϱ,θ)∈T∗Dens(M) construct wave function
Theorem (Madelung 1927, von Renesse 2011):
Wave function fulfills (nonlinear) Schrödinger equation iψ˙+Δψ−f(∣ψ∣2)ψ=0
Madelung transform
Theorem: Madelung transform induces symplectomorphism Φ:T∗Dens(M)→PC∞(M,C\{0}) (Fréchet topology of smooth functions)
Geometric quantum mechanics (Kibble 1979):
wave function ⇒ element of complex projective space
Kähler manifold
Theorem: Madelung transform induces Kähler morphism Φ:T∗Dens(M)→PC∞(M,C\{0}) (Fréchet topology of smooth functions)
Is Madelung transform isometry?
Canonical metric on PC∞(M,C): Fubini-Study metric
Fisher-Rao metric on Dens(M):
Sasaki-Fisher-Rao metric
on T∗Dens(M):
Geometric hydrodynamics via Madelung transform,
PNAS, 2018
Geometry of the Madelung transform,
arXiv preprint, 2018
Slides available at: slides.com/kmodin