azimuth
elevation
Idea by Onsager (1949):
Hamiltonian function:
Onsager's observation:
Pos. and neg. strengths \(\Rightarrow\) energy takes values \(-\infty\) to \(\infty\)
\(\Rightarrow\) phase volume function \(V(E)\) has inflection point
Idea by Onsager (1949):
Hamiltonian function:
Zeitlin (1991)
Classical
Quantized
vorticity matrix
stream matrix
Hoppe-Yau Laplacian
Classical | Quantum | |
---|---|---|
Lie group | ||
Lie algebra | ||
Phase space | ||
"Strong" norm | ||
Enstrophy norm | ||
Energy norm | ||
Measurables | ||
Singular sol. | vortex sheets | rank-1 matrices |
Axi-symmetry |
\(\operatorname{SDiff}(\mathbb{S}^2)\)
\(\operatorname{SU}(N)\)
\(\mathfrak{X}_\mu(\mathbb{S}^2)\)
\(C^\infty_0(\mathbb{S}^2)\)
\(\mathfrak{su}(N)\)
\(\mathfrak{su}(N)^*\simeq \mathfrak{su}(N)\)
\(\lVert \cdot\rVert_{L^\infty}\)
spectral norm
\(\lVert \cdot\rVert_{L^2}\)
Frobenius norm
\(\lVert \cdot\rVert_{H^{-1}}\)
\(\operatorname{tr}(PW)^{1/2}\)
values of \(\omega\)
eigenvalues of \(W\)
\(\omega\) zonal
\(W\) diagonal
azimuth
elevation
positive blobs
negative blobs
Shnirelman (2005)
Euler's equations (2D):
Zeitlin's equations:
Shnirelman (1993)
Bordemann, Meinrenken, Schlichenmaier (1994)
\(W \to \omega\) in weak* sense as \(N\to \infty\)
Dirac \(\delta_x\)
axisymmetric blob \(b_x\) centered at \(x\)
Same \(SO(3)\) symmetry!
Point vortex dynamics on \(\mathbb{S}^2\)
Symplectic reduction theory:
only \(SO(3)\) symmetry needed in proof
Blob vortex dynamics on \(\mathbb{S}^2\)
Non-zero angular momentum
?
small w.r.t.
\(H^{-1}\) or \(L^2\)
or what?
Underlying notion: quantization yields canonical vorticity splitting
Enstrophies:
\(E = \langle W,W\rangle_F\) \(E_s = \langle W_s,W_s\rangle_F\) \(E_r = \langle W_r,W_r\rangle_F\)
Energies:
\(H = \langle W,\Delta_N^{-1}W\rangle_F\) \(H_s = \langle W_s,\Delta_N^{-1}W_s\rangle_F\) \(H_r = \langle W_r,\Delta_N^{-1}W_r\rangle_F\)
\(W_r \bot W_s\) in enstrophy norm
\(W_r \bot W\) in energy norm
enstrophy levelset of \(W\)
energy levelset of \(W\)
Equivalence of norms:
References:
Slides available at: slides.com/kmodin