Uniform error bounds of

the ensemble transform Kalman filter

for chaotic dynamics

with multiplicative covariance inflation

Kota Takeda    , Takashi Sakajo

1. Department of Mathematics, Kyoto University

2. Data assimilation research team, RIKEN R-CCS

MSJ Autumn Meeting 2024 at Osaka University, Sep. 6, 2024

1,2

1

The first author is supported by RIKEN Junior Research Associate Program and JST SPRING JPMJSP2110.

The second author is supported by JST MIRAI JPMJMI22G1.

Setup

\frac{d x^\dagger}{dt} = \mathcal{F}(x^\dagger)
(\mathcal{F}: \mathbb{R}^{N_x} \rightarrow \mathbb{R}^{N_x})
y_j = H x^\dagger_j + \xi_j
(H: \mathbb{R}^{N_y \times N_x}, \xi_j \in \mathbb{R}^{N_y} \text{ noise})
x^\dagger_j = x^\dagger(jh)

Model dynamics

Observation

\mathbb{R}^{N_x}
\mathbb{R}^{N_y}
(h > 0 \text{ obs. interval})

unknown

Aim

x^\dagger_j

Unkown

Given

Y_j = \{y_i \mid i \le j\}
x_j

Construct

x^\dagger_j

estimate

Quality Assessment

\mathbb{E}\left[|x_j - x^\dagger_j|^2\right]
(\text{i.e. } \mathbb{P}^{x_j} \approx \mathbb{P}^{x^\dagger_j}({}\cdot{} | Y_j))
y_j
\mathbb{R}^{N_x}
\mathbb{R}^{N_y}
x^\dagger_{j-1}
x^\dagger_j
y_{j-1}

Given

Model

Obs.

Obs.

unknown

Sequential Data Assimilation

\mathbb{P}^{x_{j-1}}
\mathbb{P}^{\hat{x}_j}
\mathbb{P}^{x_j}

(I) Prediction

by Bayes' rule

by model

(II) Analysis

y_j

We can construct the exact distribution by 2 steps at each time step.

Prediction

\mathbb{P}^{x_1}
\mathbb{P}^{\hat{x}_1}
\mathbb{P}^{x_0}

...

Data Assimilation Algorithms

Only focus on Approximate Gaussian Algorithms

Data Assimilation Algorithms

\mathbb{P}^{x_j} \approx \frac{1}{m} \sum_{k=1}^m \delta_{x_j^{(k)}}.

Kalman filter(KF) [Kalman 1960]

  • All Gaussian distribution
  • Update of mean and covariance.

Assume: linear F, Gaussian noises

Ensemble Kalman filter(EnKF) 

Non-linear extension by Monte Carlo

  •  
  • Update of ensemble
\mathbb{P}^{x_j} = \mathcal{N}(m_j, C_j).
X_j = [x_j^{(1)},\dots,x_j^{(m)}].

Data Assimilation Algorithms

Kalman filter(KF)

Assume: linear F, Gaussian noises

Ensemble Kalman filter (EnKF) 

Non-linear extension by Monte Carlo method

m_j, C_j
X_j
\widehat{m}_j, \widehat{C}_j
m_{j-1}, C_{j-1}
y_j
X_{j-1}
\widehat{X}_j
y_j
X_j = [x_j^{(k)}]_{k=1}^m, \widehat{X}_j = [\widehat{x}_j^{(k)}]_{k=1}^m.

Linear F

\text{nonlinear } \mathcal{F}

Bayes' rule

\widehat{m}_j, \widehat{C}_j
m_j, C_j

approx.

ensemble

\approx
\approx

predict

analysis

  • Two major implementations:
    • Perturbed Observation (PO): stochastic
    • Ensemble Transform Kalman Filter (ETKF): deterministic

EnKF (illustration)

PO (stochastic EnKF)

\widehat{x}^{(k)}_j = \Psi(x^{(k)}_{j-1}), \quad k = 1, \dots, m.
y^{(k)}_j = y_j + \xi_j^{(k)}, \quad \xi_j^{(k)} \sim N(0, R), \quad k = 1, \dots, m.
(II) \widehat{X}_j, y_j \rightarrow X_j: \text{Replicate observations,}\\
(I) X_{j-1} \rightarrow \widehat{X}_j: \text{ Evolve each member by model dynamics } \Psi,
x_j^{(k)} = \widehat{x}_j^{(k)} + K_j(y_j^{(k)} - H \widehat{x}_j^{(k)}), \quad k = 1, \dots, m,
\text{Then, update each member,}

Stochastic!

(Burgers+1998) G. Burgers, P. J. van Leeuwen, and G. Evensen, Analysis Scheme in the Ensemble Kalman Filter,684, Mon. Weather Rev., 126 (1998), pp. 1719–1724.

\text{where } K_j = \widehat{C}_j H^\top (H \widehat{C}_j H^\top + R)^{-1}, \widehat{C}_j = \operatorname{Cov}(\widehat{X}_j),

ETKF (deterministic EnKF)

\widehat{x}^{(k)}_j = \Psi(x^{(k)}_{j-1}), \quad k = 1, \dots, m.
\text{with the transform matrix } T_j \in \mathbb{R}^{m \times m} \text{ s.t. }
(II) \widehat{X}_j, y_j \rightarrow X_j: \text{Decompose } \widehat{X}_j =\overline{\widehat{x}}_j + d\widehat{X}_j.\\
(I) X_{j-1} \rightarrow \widehat{X}_j: \text{ Evolve each member by model dynamics } \Psi,
\overline{x}_j = \overline{\widehat{x}}_j^{(k)} + K_j(y_j^{(k)} - H \overline{\widehat{x}}_j^{(k)}), \quad dX_j = d\widehat{X}_j T_j.
\text{Then, update separately,}

Deterministic!

(Bishop+2001)C. H. Bishop, B. J. Etherton, and S. J. Majumdar, Adaptive Sampling with the Ensemble Transform681
Kalman Filter. Part I: Theoretical Aspects, Mon. Weather Rev., 129 (2001), pp. 420–436.

\frac{1}{m-1} d\widehat{X}_j T_j (d\widehat{X}_j T_j)^* = (I - K_j H) \widehat{C}_j.

Inflation (numerical technique)

Issue: Underestimation of covariance through the DA cycle.

→ Poor state estimation. → (idea) inflating covariance before step (II).

Two basic methods of inflation

\text{Additive } (\alpha \ge 0): \widehat{C}_j \rightarrow \widehat{C}_j + \alpha^2 I_{N_x} \text{ (only for PO)}.
\text{Multiplicative } (\alpha \ge 1): \widehat{C}_j \rightarrow \alpha^2\widehat{C}_j \text{ (PO)},
d\widehat{X}_j \rightarrow \alpha d\widehat{X}_j \text{ (ETKF)}.
\text{where } d\widehat{X}_j = [\widehat{x}^{(k)}_j - \overline{\widehat{x}}_j]_{k=1}^m, \overline{\widehat{x}}_j = \frac{1}{m} \sum_{k=1}^m \widehat{x}^{(k)}_j.

(I) Prediction → inflation  (II) Analysis → ...

Literature review

  • Consistency (Mandel+2011, Kwiatkowski+2015)

  • Sampling errors (Al-Ghattas+2024)

  • Error analysis (full observation                )

    • PO + add. inflation (Kelly+2014)

    • ETKF + multi. inflation (T.+2024) → current

  • Error analysis (partial observation) → future

(Kelly+2014) D. T. B. Kelly, K. J. H. Law, and A. M. Stuart, Well-posedness and accuracy of the ensemble716
Kalman filter in discrete and continuous time, Nonlinearity, 27 (2014), pp. 2579–260.

(Al-Ghattas+2024) O. Al-Ghattas and D. Sanz-Alonso, Non-asymptotic analysis of ensemble Kalman updates: Effective669
dimension and localization, Information and Inference: A Journal of the IMA, 13 (2024).

(Kwiatkowski+2015) E. Kwiatkowski and J. Mandel, Convergence of the square root ensemble kalman filter in the large en-719
semble limit, Siam-Asa J. Uncertain. Quantif., 3 (2015), pp. 1–17.

(Mandel+2011) J. Mandel, L. Cobb, and J. D. Beezley, On the convergence of the ensemble Kalman filter, Appl.739 Math., 56 (2011), pp. 533–541.

H = I_{N_x}

How EnKF approximate KF?

How EnKF approximate

the true state?

Mathematical analysis of EnKF

Assumptions on model

(Reasonable)

Assumption on observation

(Strong)

Assumptions for analysis

N_y = N_x, H = I_{N_x}, \xi \sim \mathcal{N}(0, r^2 I_{N_x})

Assumption (obs-1)

full observation

Strong!

\exist \rho > 0 \text{ s.t. } \forall x_0 \in B(\rho), \forall t > 0, x(t ; x_0) \in B(\rho).
\exist \beta > 0 \text{ s.t. } \forall x \in B(\rho), \forall x' \in \mathbb{R}^{N_x}, \langle F(x) - F(x'), x - x' \rangle \le \beta | x - x'|^2.
\exist \beta > 0 \text{ s.t. } \forall x, x' \in B(\rho), |F(x) - F(x')| \le \beta | x - x'|.

Assumption (model-1)

Assumption (model-2)

Assumption (model-2')

\forall x_0 \in \R^{N_x}, \dot{x}(t) = F(x(t)) \text{ has an unique solution, and}

Reasonable

(B(\rho) = \{x \in \R^{N_x} \mid |x| \le \rho \})

Dissipative dynamical system

Dissipative dynamical systems

Lorenz' 63, 96 equations, widely used in geoscience,

\frac{dx^i}{dt} = (x^{i+1} - x^{i-2}) x^{i-1} - x^i + f \quad (i = 1, \dots, 40),

Example (Lorenz 96)

\bm{x} = (x^i)_{i=1}^{40} \in \mathbb{R}^{40}, f \in \R,

non-linear conserving

linear dissipating

forcing

Assumption (model-1, 2, 2')

hold

Example (Lorenz 63)

(incompressible 2D Navier-Stokes equations in infinite-dim. setting)

Error analysis of PO (prev.)

Theorem (Kelly+2014)

\text{Let us consider the PO method with additive inflation } \alpha > 0.
\limsup_{j \rightarrow \infty} e^{(k)}_j \le \frac{2\min\{m, N_x\}}{1-\theta}r^2
\text{Then, } \exist \theta = \theta(\beta, h, r, \alpha) \in (0, 1), \text{ s.t. }
\text{Let } e^{(k)}_j = \mathbb{E}\left[|x^{(k)}_j - x^\dagger_j|^2\right] \text{ for } k = 1, \dots, m.
\text{Let Assumptions (obs-1, model-1,2) hold and }\alpha \gg 1.

variance of observation noise

uniformly in time

\text{for } k = 1, \dots, m.

Error analysis of ETKF (our)

\limsup_{j \rightarrow \infty} e_j \le \frac{N_x r^2}{1-\theta} + \left(\frac{1 - \Theta}{1 - \theta} - 1\right)D.

Theorem (T.+2024)

\text{Let } e_j = \mathbb{E}\left[|\overline{x}_j - x^\dagger_j|^2\right] \text{ where } \overline{x}_j = \frac{1}{m} \sum_{k=1}^m x^{(k)}_j.
\text{where } \Theta = \Theta(\beta, \rho, h, r, m, \alpha) , D = D(\beta, \rho).
\text{Let us consider the ETKF with multiplicative inflation } \alpha \ge 1.
\text{Then } \exist \theta = \theta(\beta, \rho, h, r, m, \alpha) < 1\text{ s.t.}
\text{Let Assumptions (obs-1, model-1,2') hold.}
\text{Suppose } m > N_x \text{ so that } \operatorname{rank}([x^{(k)}_0]_{k=1}^m) = N_x \text{ and } \alpha \gg 1,

Sketch: Error analysis of ETKF (our)

(1) \text{ If } \widehat{C}_j \text{ is positive-difinite, we have a bound by } \alpha \gg 1.
(2) \text{ We also have a lower bound of eigenvalues of } \widehat{C}_j \text{ by } \alpha \gg 1.

Summary

\limsup_{j \rightarrow \infty} e^{(k)}_j \le \frac{2\min\{m, N_x\}}{1-\theta}r^2,
\limsup_{j \rightarrow \infty} e_j \le \frac{N_x r^2}{1-\theta} + \left(\frac{1 - \Theta}{1 - \theta} - 1\right)D.
\text{Suppose } m > N_x \text{ and } \alpha \gg 1,
\text{Suppose } \alpha \gg 1,

ETKF with multiplicative inflation (our)

PO with additive inflation (prev.)

= O(r^2)
r \rightarrow 0

accurate observation limit

= O(r^2)
O(r^4)
\text{for } k = 1, \dots, m.

Two approximate Gaussian filters (EnKF) are assessed in terms of the state estimation error.

due to

due to

Future

\|(I + \widehat{C}_j H^\top R^{-1} H)^{-1}\|_{op} \ge 1.
\text{If } m <= N_x \text{ or } N_y < N_x, H \in \mathbb{R}^{N_y}, R \in \mathbb{R}^{N_y \times N_y},

Issue

Issue

\text{then,}

Error contraction in (II)

Issue: partial observation

y = (x^1, x^2) + \xi
x = (x^1, x^2, x^3)

Partially observed

H
H = I_{N_x}

In general, we can obtain partial information about the state.

Example

(full observation) in Assumption (obs-1) is unrealistic

(H \text{ is a projection.})

true state

observation

Made with Slides.com