Vaughan Jones - 1990 Fields Medal
- Aharonov, Jones, Landau, STOC 2006.
Unknown Function
Training Data
Hypothesis Set
Learning
Algorithm
Comp. Complexity
Sample Complexity
Unknown Function
Training Data
Hypothesis Set
Learning
Algorithm
Comp. Complexity
Sample Complexity
Quantum Ingredients
Quantum Advantage
CQ
CC
QC
QQ
CQ
QQ
QC
- V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 100, 160501 (2008).
[1] Aleksandrs Belovs, Quantum Algorithms for Classical Probability Distributions, 27th annual European symposium on algorithms (esa 2019), 2019, pp. 16:1–16:11.
[1] Efficient State Read-out for Quantum Machine Learning Algorithms. Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Physical Review Research 3, 04395 (2021). [arXiv:2004.06421]
[1] Efficient State Read-out for Quantum Machine Learning Algorithms. Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Physical Review Research 3, 04395 (2021). [arXiv:2004.06421]
Expressivity
Trainability
Generalization
[1] On the Expressive Power of Deep Neural Networks. (ICML2017) arXiv:1606.05336
Expressivity
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao. The Expressive Power of Parameterized Quantum Circuits. Physical Review Research 2, 033125 (2020) [arXiv:1810.11922].
Expressivity
Trainability
Trainability
[1] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature communications, 9(1):1– 6, 2018.
Trainability
Trainability
Trainability
[1] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Toward Trainability of Deep Quantum Neural Networks. [arXiv:2112.15002]
Trainability
[1] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Toward Trainability of Deep Quantum Neural Networks. [arXiv:2112.15002]
Trainability
[1] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Submitted to NIPS 2022.
Trainability
[1] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Submitted to NIPS 2022.
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. PRX-Quantum 2, 040337 (2021)[arXiv:2007.12369]
Trainability
\(d\)= \(|\bm{\theta}|\)
\(T\)= # of iteration
\(L_Q\)= circuit depth
\(p\)= error rate
\(K\)= # of measurements
Trainability
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. PRX-Quantum 2, 040337 (2021)[arXiv:2007.12369]
\(d\)= \(|\bm{\theta}|\)
\(T\)= # of iteration
\(L_Q\)= circuit depth
\(p\)= error rate
\(K\)= # of measurements
Trainability
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. PRX-Quantum 2, 040337 (2021)[arXiv:2007.12369]
Generalization
[1] S. Arunachalam, A. B. Grilo, and H. Yuen, arXiv:2002.08240 (2020).
Generalization
Generalization
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. PRX-Quantum 2, 040337 (2021)[arXiv:2007.12369]
經典: 1 error per 6 month in a 128MB PC100 SDRAM (2009)
量子: 1 error per second per qubit (2021)
Noise
\(\mathcal{C}\): The collection of all parameters
\(\mathcal{A}\): The collection of all possible circuits
\(\mathcal{E}_{\bm{a}}\): The error for the architecture \(\bm{a}\)
[1] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, Dacheng Tao. Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers. arXiv:2010.10217 (2020).
Error Mitigation
Error Mitigation
[1] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, Dacheng Tao. Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers. arXiv:2010.10217 (2020).
Error Mitigation
[1] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, Dacheng Tao. Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers. arXiv:2010.10217 (2020).
Harnessing Noise
Harnessing Noise
Providing Privacy
[1] Li Zhou and Mingsheng Ying. Differential privacy in quantum computation. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pages 249–262. IEEE, 2017.
[2] Scott Aaronson and Guy N Rothblum. Gentle measurement of quantum states and differential privacy. Proceedings of ACM STOC‘2019.
Providing Privacy
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. Quantum differentially private sparse regression learning. arXiv:2007.11921 (2020)
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. Quantum differentially private sparse regression learning. arXiv:2007.11921 (2020)
Providing Privacy
[1] Lu et.al, “Quantum Adversarial Machine Learning". [arXiv:2001.00030]
Robustness
Robustness
[1]Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, Nana Liu. Quantum noise protects quantum classifiers against adversaries. Physical Review Research 3, 023153 (2021). [arXiv:2003.09416].
Robustness