Feynman, Richard (June 1982). "Simulating Physics with Computers"
"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws"
Quantum Computers mostly likely will disprove Strong Church-Turing Thesis.
Vaughan Jones - 1990 Fields Medal
- Aharonov, Jones, Landau, STOC 2006.
經典: 1 error per 6 month in a 128MB PC100 SDRAM (2009)
量子: 1 error per second per qubit (2021)
俞韋亘
賴青瑞
林俊吉
黃皓瑋
Unknown Function
Training Data
Hypothesis Set
Learning
Algorithm
Comp. Complexity
Sample Complexity
Many More!
CQ
CC
QC
QQ
CQ
QQ
QC
[1] Aleksandrs Belovs, Quantum Algorithms for Classical Probability Distributions, 27th annual European symposium on algorithms (esa 2019), 2019, pp. 16:1–16:11.
V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 100, 160501 (2008).
[1] Efficient State Read-out for Quantum Machine Learning Algorithms. Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. arXiv:2004.06421
[1] Efficient State Read-out for Quantum Machine Learning Algorithms. Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. arXiv:2004.06421
Expressivity
Trainability
Generalization
[1] On the Expressive Power of Deep Neural Networks. (ICML2017) arXiv:1606.05336
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao. The Expressive Power of Parameterized Quantum Circuits. Physical Review Research 2, 033125 (2020) [arXiv:1810.11922].
[1] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature communications, 9(1):1– 6, 2018.
[1] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Toward Trainability of Quantum Neural Networks. arXiv:2011.06258 (2020).
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
\(d\)= \(|\bm{\theta}|\)
\(T\)= # of iteration
\(L_Q\)= circuit depth
\(p\)= error rate
\(K\)= # of measurements
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
\(d\)= \(|\bm{\theta}|\)
\(T\)= # of iteration
\(L_Q\)= circuit depth
\(p\)= error rate
\(K\)= # of measurements
經典: 1 error per 6 month in a 128MB PC100 SDRAM (2009)
量子: 1 error per second per qubit (2021)
\(\mathcal{C}\): The collection of all parameters
\(\mathcal{A}\): The collection of all possible circuits
\(\mathcal{E}_{\bm{a}}\): The error for the architecture \(\bm{a}\)
[1] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, Dacheng Tao. Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers. arXiv:2010.10217 (2020).
[1] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, Dacheng Tao. Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers. arXiv:2010.10217 (2020).
Quantum ML and DP learning have different aims!
[1] Li Zhou and Mingsheng Ying. Differential privacy in quantum computation. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pages 249–262. IEEE, 2017.
[2] Scott Aaronson and Guy N Rothblum. Gentle measurement of quantum states and differential privacy. Proceedings of ACM STOC‘2019.
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. Quantum differentially private sparse regression learning. arXiv:2007.11921 (2020)
Lu et.al, “Quantum Adversarial Machine Learning, arXiv:2001.00030v1”