Feynman, Richard (June 1982). "Simulating Physics with Computers"
"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws"
Quantum Computers mostly likely will disprove Strong Church-Turing Thesis.
Vaughan Jones - 1990 Fields Medal
- Aharonov, Jones, Landau, STOC 2006.
經典: 1 error per 6 month in a 128MB PC100 SDRAM (2009)
量子: 1 error per second per qubit (2021)
The Sampling task finished by '祖沖之' in about 1.2 HOURS will take the most powerful supercomputer at least 8 YEARS. [arXiv:2106.14734]
俞韋亘
賴青瑞
林俊吉
黃皓瑋
Unknown Function
Training Data
Hypothesis Set
Learning
Algorithm
Comp. Complexity
Sample Complexity
Many More!
CQ
CC
QC
QQ
CQ
QQ
QC
CQ
QC
Readin
Readout
Q.C.
Expressivity
Trainability
Generalization
[1] On the Expressive Power of Deep Neural Networks. (ICML2017) arXiv:1606.05336
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao. The Expressive Power of Parameterized Quantum Circuits. Physical Review Research 2, 033125 (2020) [arXiv:1810.11922].
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
[1] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature communications, 9(1):1– 6, 2018.
[1] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Toward Trainability of Quantum Neural Networks. arXiv:2011.06258 (2020).
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
\(d\)= \(|\bm{\theta}|\)
\(T\)= # of iteration
\(L_Q\)= circuit depth
\(p\)= error rate
\(K\)= # of measurements
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
\(d\)= \(|\bm{\theta}|\)
\(T\)= # of iteration
\(L_Q\)= circuit depth
\(p\)= error rate
\(K\)= # of measurements