Machine Learning Meets Quantum Computation

Min-Hsiu Hsieh (謝明修)

University of Technology Sydney

f: X\to Y

Unknown Function

\{(x_i,y_i)\}_{i=1}^N

Training Data

\mathcal{H}

Hypothesis Set

Learning

Algorithm

\hat{f}

Comp. Complexity

Sample Complexity

Quantum Challenge #1

Noncommutative: \(AB\neq BA\) 

Moment Generating Function: \(\mathbb{E}e^{\theta (A+B)}\neq\mathbb{E}e^{\theta A}e^{\theta B}\) 

\frac{a}{b} \mapsto A B^{-1}?
e^{a+b} \mapsto e^A e^B?

Quantum Challenge #2

Entanglement: \(\rho_{AB}\neq \rho_{A}\otimes\rho_B\) 

Problem Setup

=\{\pm 1\}
=\{\pm 1\}
=\{\pm 1\}
=\{\pm 1\}

Alice

Bob

Compute \((QS+RS+RT-QT)\)

Q
R
S
T

Classical Mechanics

\(\theta=(Q+R)S+(R-Q)T\leq 2\)

Let  \(\text{p}(qrst) := \text{Pr}\{Q=q,R=r,S=s,T=t\}\).

\mathbb{E}[\theta]= \sum_{qrst}\text{p} (qrst)(qs+rs+rt-qt)
\leq 2

Probabilistically, 

Quantum Mechanics

|\Psi_{AB}\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle_A|1\rangle_B -|1\rangle_A |0\rangle_B\right)
=\{\pm 1\}
=\{\pm 1\}
=\{\pm 1\}
=\{\pm 1\}
Q
R
S
T
Q=Z
R=X
S=\frac{-Z-X}{\sqrt{2}}
T=\frac{Z-X}{\sqrt{2}}

Quantum Mechanics

\mathbb{E}[\theta] = \langle QS\rangle + \langle RS\rangle + \langle RT\rangle - \langle QT\rangle= 2\sqrt{2}

Why Quantum Computation Matters?

Type of Input

Type of Algorithms

CQ
CC
QC
QQ
CQ
QQ
QC
  • Linear Equation Solvers

  • Peceptron

  • Recommendation Systems

  • Semidefinite Programming

  • Many Others (such as non-Convex Optimization)

  • State Tomography

  • Entanglement Structure

  • Quantum Control

CC
  • Linear Equation Solvers

  • Recommendation Systems

  • Semidefinite Programming

  • Minimum Conical Hull  

CQ
QQ
CC

Sample Complexity for Learning Quantum Objects

Q. State

Measurement

Learning States

Learning Measurements

fat\(_{\mathcal{D}(\mathcal{H})}(\epsilon,\mathcal{E}(\mathcal{H})) = O(\log d/\epsilon^2)\)

fat\(_{\mathcal{E}(\mathcal{H})}(\epsilon,\mathcal{D}(\mathcal{H})) = O( d/\epsilon^2)\)

Hao-Chung Cheng, MH, Ping-Cheng Yeh. The learnability of unknown quantum measurements. QIC 16(7&8):615–656 (2016).

Thank you for your attention!

Made with Slides.com