1701.03195 |
---|
|
Small Deviation
Large Deviation
Moderate Deviation
Small Deviation
Large Deviation
Moderate Deviation
Strassen, Transactions of the Third Prague Conference on Information Theory, pp. 689–723, 1962.
Tomamichel and Tan, CMP 338(1):103–137, 2015.
Shannon, Bell System Technical Journal, 38(3):611–656, 1959.
Burnashev and Holevo, Problems of information transmission, 34(2):97–107, 1998.
Altug and Wagner. IEEE TIT 60(8):4417–4426, 2014.
Chubb, Tomamichel and Tan, arXiv: 1701.03114.
Cheng and Hsieh, arXiv: 1701.03195.
Cheng and Hsieh, arXiv: 1701.03195.
[Achievability] \(\limsup_{n\to\infty}\frac{1}{na_n^2}\log\varepsilon_n(R_n)\leq -\frac{1}{2V_W}\)
[Converse] \(\liminf_{n\to\infty}\frac{1}{na_n^2}\log\varepsilon_n(R_n)\geq -\frac{1}{2V_W}\)
Chubb, Tomamichel and Tan, arXiv: 1701.03114.
$$\varepsilon_n(R_n) \leq 4\exp\left(-n\left[\max_{0\leq s\leq 1} \tilde{E}_0(s,P)-sR_n\right]\right)$$
Hayashi, PRA 76(6): 06230,12007.
Apply Taylor Expansion to \(\tilde{E}_0(s,P)\) at \(s=0\).
(a) Partial derivatives of \(\tilde{E}_0\) are continuous.
(b) \(\tilde{E}_0\) is concave in \(s\geq 0 \).
\(H_0:\rho^n=\rho_1\otimes\cdots\otimes\rho_n\), \(H_1:\sigma^n=\sigma_1\otimes\cdots\otimes\sigma_n\)
Chaganty-Sethuraman , The Annals of Probability, 21(3):1671–1690, 1993.