1. [arXiv:1803.07505]: Cheng (NTU&UTS), Hanson (Cambridge), Datta (Cambridge), MH
3. [arXiv:1701.03195]: Cheng (NTU&UTS), MH
2. [arXiv:1704.05703]: Cheng (NTU&UTS), MH, Tomamichel (UTS)
Small Deviation
Large Deviation
Moderate Deviation
Small Deviation
Large Deviation
Moderate Deviation
Small Deviation
Large Deviation
Moderate Deviation
Strassen, Transactions of the Third Prague Conference on Information Theory, pp. 689–723, 1962.
Tomamichel and Tan, CMP 338(1):103–137, 2015.
Tomamichel and Hayashi, IEEE IT 59(11):7693-7710, 2013.
Nomura and Han. IEEE IT 60(9):5553–5572, 2014.
Source
Channel
Shannon, Bell System Technical Journal, 38(3):611–656, 1959.
Burnashev and Holevo, Problems of information transmission, 34(2):97–107, 1998.
Altug and Wagner. IEEE TIT 60(8):4417–4426, 2014.
Chubb, Tomamichel and Tan, arXiv: 1701.03114.
Cheng and Hsieh, arXiv: 1701.03195.
Shannon, Bell System Technical Journal, 38(3):611–656, 1959.
Shannon, Gallager, and Berlekamp. Information and Control, 10(1):65–103, 1967.
Haroutunian. Problemy Peredachi Informatsii, 4(4):37–48, 1968, (in Russian).
Blahut. IEEE TIT, 20(4):405–417, 1974.
Dalai. IEEE TIT, 59(12):8027–8056, 2013.
Winter. PhD Thesis, Universitate Bielefeld, 1999.
Cheng, Hsieh, and Tomamichel. arXiv: 1704.05703
Cheng, Hsieh, and Tomamichel. arXiv: 1704.05703
Dalai. IEEE TIT, 59(12):8027–8056, 2013.
Shannon, Gallager, and Berlekamp. Information and Control, 10(1):65–103, 1967.
Cheng, Hsieh, and Tomamichel. arXiv: 1704.05703, 2017.
Altug and Wagner, IEEE TIT, 60(3): 1592–1614, 2014.
$$\varepsilon_{\max}(\mathcal{C}_n) \geq \max_\sigma\min_{\mathbb{x}^n\in \mathcal{C}_n} \tilde{\alpha}_{\frac{1}{|\mathcal{C}_n|}}(W_{\mathbb{x}^n}||\sigma).$$
Two one-shot converse Hoeffding bounds for \(\tilde{\alpha}_\mu(\cdot|\cdot)\).
\(H_0:\rho^n=\rho_1\otimes\cdots\otimes\rho_n\); \(H_1:\sigma^n=\sigma_1\otimes\cdots\otimes\sigma_n\)
Blahut. IEEE TIT, 20(4):405–417, 1974.
Audenaert et. al., PRL 98:160501, 2007.
\(H_0:\rho^n=\rho_1\otimes\cdots\otimes\rho_n\), \(H_1:\sigma^n=\sigma_1\otimes\cdots\otimes\sigma_n\)
Bahadur and Rao, The Annals of Mathematical Statistics, 31(4):1015–1027, 1960.
Altug and Wagner, IEEE TIT, 60(3): 1592–1614, 2014.
(a) The map \((\alpha,P)\to I_\alpha\) is continuous on \([0,1]\times\mathcal{P}(\mathcal{X})\).
(b) The map \(\alpha\to I_\alpha\) is monotone increasing on \([0,1]\).
(c) The map \(\alpha\to \frac{1-\alpha}{\alpha}I_\alpha\) is strictly concave on \((0,1]\).
(a) The map \(R\to E^{(\cdot)}_{\text{sp}}\) is convex, continuous, and non-increasing.
(b) \(E^{(\cdot)}_{\text{sp}}\) is differentiable w.r.t. \(R\).
(c) \({E'}^{(\cdot)}_{\text{sp}}\) is continuous.
Cheng and Hsieh, arXiv: 1701.03195.
[Achievability] \(\limsup_{n\to\infty}\frac{1}{na_n^2}\log\varepsilon_n(R_n)\leq -\frac{1}{2V_W}\)
[Converse] \(\liminf_{n\to\infty}\frac{1}{na_n^2}\log\varepsilon_n(R_n)\geq -\frac{1}{2V_W}\)
Chubb, Tomamichel and Tan, arXiv: 1701.03114.
$$\varepsilon_n(R_n) \leq 4\exp\left(-n\left[\max_{0\leq s\leq 1} \tilde{E}_0(s,P)-sR_n\right]\right)$$
Hayashi, PRA 76(6): 06230,12007.
Apply Taylor Expansion to \(\tilde{E}_0(s,P)\) at \(s=0\).
(a) Partial derivatives of \(\tilde{E}_0\) are continuous.
(b) \(\tilde{E}_0\) is concave in \(s\geq 0 \).
\(H_0:\rho^n=\rho_1\otimes\cdots\otimes\rho_n\), \(H_1:\sigma^n=\sigma_1\otimes\cdots\otimes\sigma_n\)
Chaganty-Sethuraman , The Annals of Probability, 21(3):1671–1690, 1993.
Shannon, Bell System Technical Journal, 38(3):611–656, 1959.