Lecturer @ University of Huddersfield

Brief introduction about my teaching and research experience

Teaching

Research

Funding

Dr. Ling Ma

Teaching experience

Planning and Control of Construction Projects
  • Update the syllabus
  • Develop all the teaching material
  • Prepare the exams

© Dr. Ling Ma

Course Schedule

© Dr. Ling Ma

Course Goals - Skills

© Dr. Ling Ma

Teaching Method

© Dr. Ling Ma

Active learning

Online hands-on video

Practical homework

Research experience

Computing in Civil and Infrastructure Engineering
  • Sizable publication
  • Leadership in research projects
  • Success in funding application
  • Collaboration with researchers from diverse background

© Dr. Ling Ma

Safety early-warning of tunneling induced grounding settlement

Ma, L., Early Warning Analysis for Safety Risk of Metro Tunnel Construction Based on a Spatio-Temporal Model of Ground Settlement, China National Natural Science Funds for Young Scholar, $41,000, PI, 51408247, 2015-2017,

© Dr. Ling Ma

Sacks, R., Kedar, A., Borrmann, A., Ma, L., Singer, D., and Kattel, U., SeeBridge Information Delivery Manual (IDM) for Next Generation Bridge Inspection. 33rd International Symposium on Automation and Robotics in Construction, 2016: Auburn, AL

Ma, L., and Sacks, R., (2016). ‘A Cloud-based BIM Platform for Information Collaboration’, ISARC 2016 33rd International Symposium on Automation and Robotics in Construction, Sattineni, A. (ed.), Auburn University, Auburn AL, US, July 2016.

Sacks, R., Ma, L., Yosef, R., Borrmann, A., Daum, S., Kattel, U., Enhancement of a Semantic Enrichment Tool for Building Information Modeling. Advanced Engineering Informatics, in preparation.

Semantic Enrichment Engine for BIM

© Dr. Ling Ma

Generating BIM model of an earthquake damaged building using laser scanning

© Dr. Ling Ma

Next generation bridge inspection

Videogrammetry

(GoPro4 black)

Mobile laser scanning

(Trimble MX7)

Terrestrial laser scanning

(Leica c10)

© Dr. Ling Ma

Agent-based simulation of construction workflow and information flow

 

Shahaf, Y., Sacks, R., Ma, L., The Impact of Process Information Flow on Trade Crews' Workflow, Part I: Serious Game Simulation. ASCE Journal of Construction Engineering and Management, in preparation.

Ma, L., Sacks, R., Shahaf, Y., The Impact of Process Information Flow on Trade Crews' Workflow, Part II: Agent–Based Simulation. ASCE Journal of Construction Engineering and Management, in preparation.

© Dr. Ling Ma

Future Interests

An active researcher in the following area:
  • Design phase - information interoperability + semantic enrichment
  • Construction phase - VR / AR + Lean construction
  • Maintenance phase - computer vision + machine learning

Thanks !

© Dr. Ling Ma

Transformation among Data, Information and Knowledge

Practices in civil engineering

Data

Information

Knowledge

Dr. Ling Ma

  • How it works when we have huge data?
  • How it works when we have no data?
  • 25 Metro lines planned
  • >200 kilometers with >130 stations have been built since 2009
  • Yangzi river: longest river in Asia and the third-longest in the world
  • Chicago of China
  • 10.6 million people

Wuhan

© 2016, Dr. Ling Ma 

Data collection

  • Geotechnical survey
  • Construction reports
  • Site photos
  • ...

© 2016, Dr. Ling Ma 

Semantic enrichment

© 2016, Dr. Ling Ma 

Data de-noise

© 2016, Dr. Ling Ma 

Settlement distribution and development

© 2016, Dr. Ling Ma 

Knowledge discovery from the data

The settlement trough width is correlated with the thickness of soil layers
The settlement trough width is time invariant

© 2016, Dr. Ling Ma 

Safety classification system

Identification of settlement outlier by Shewhart charts
Area classification zones of ground lose
Dynamic safety classification of ground area and adjacent facilities

© 2016, Dr. Ling Ma 

Transformation among Data, Information and Knowledge

 

Data

Information

Knowledge

An integrated data mining system for safety classification of tunneling construction

Data

Information

Knowledge

Semantic enrichment for BIM - SeeBIM

© 2016, Dr. Ling Ma 

Why Enrichment is Important to BIM

© 2016, Dr. Ling Ma 

Enrichment Tasks

© 2016, Dr. Ling Ma 

Previous work 

SeeBIM 1.0

Michael Belsky, PhD, “A FRAMEWORK FOR SEMANTIC ENRICHMENT OF IFC MODELS”, Civil and Env. Eng., Technion. 2015

© 2016, Dr. Ling Ma 

Infravation - SeeBridge

© 2016, Dr. Ling Ma 

Rule engine of SeeBIM 1.0

Rules:

  • IF a & b -> X
  • IF b & c -> Y

Advantage:

  • No computer programing skill is required

Disadvantage:

  • Lack of rigor

© 2016, Dr. Ling Ma 

​Fact:

IF a & b & c -> ?

SeeBIM 2.0

© 2016, Dr. Ling Ma 

Features F1 F2 F3 F4 F5 F6
Type A y y x y n n
Type B n n y x y n
Type C y y n y x n
Type D n n y y y x
  • ‘y’:= Yes
  • ‘n’:= No
  • ‘x’:= Not always

Find the 'unique' string (skip the comparison with ambiguous 'x' )

y n y x n
y x y y n

Not unique

© 2016, Dr. Ling Ma 

SeeBIM 2.0 - pairwise

Physical contact ?

Orthogonality

Length comparison

Width comparison

Elevation comparison

...

Find the 'unique' string (skip the comparison with ambiguous 'x' )

  • ‘y’:= Yes;
  • ‘n’:= No;
  • ‘x’:= Not always;
y n y x n
y x y y n

Not unique

SeeBIM 2.0 - an example rule set for bridge object classification

© 2016, Dr. Ling Ma 

Sacks, R., L. Ma, R. Yosef, A. Borrmann, S. Daum. and U. Kattel, Enhancement of a Semantic Enrichment Tool for Building Information Modeling. Journal of Computing in Civil Engineering, under review.

SeeBIM 2.0 - another thought

© 2016, Dr. Ling Ma 

Feature1 Feature2 Feature3 Feature4 Feature5
Type A n y X n y
Type B n y y n y
  • ‘y’:= Yes;
  • ‘n’:= No;
  • ‘x’:= Not always;

Rules:

Fact:

Obj 1 n y y n y
Obj 2 n y n n y
PB>PA
PA>PB

Feature Matching

© 2016, Dr. Ling Ma 

Longitudinal Transverse Vertical Convex ...
Primary Girder 1 -1 -1 -1
Transverse Beam -1 1 -1 1
...

Primary Girder = (1,-1,-1,-1)

Longitudinal Transverse Vertical Convex
Object 1 -1 1 -1 1
Object 2 1 -1 -1 -1
Object 3 1 -1 -1 1

Object 1 = (-1,1,-1,1)

Primary Girder Transverse Beam
Object 1 180 degree 0 degree
Object 2 0 degree 180 degree
Object 3 60 degree 90 degree

Pairwise Feature Matching

© 2016, Dr. Ling Ma 

f1 f2 f3
E1,E1 1 1 1
E1,E2 -1 0 0
E1,E3 -1 -1 0
E2,E1 0 0 0
E2,E2 1 1 0
E2,E3 0 0 -1
E3,E1 -1 -1 -1
E3,E2 0 -1 0
E3,E3 0 0 -1
f1 f2 f3
O1,O2 1 1 1
O1,O3 -1 1 -1
O1,O4 -1 -1 1
O1,O5 1 1 1
O2,O1 1 1 1
O2,O3 -1 -1 1
O2,O4 1 1 1
O2,O5 1 1 1
O3,O1 1 1 1
O3,O2 -1 -1 1
O3,O4 -1 -1 1
O3,O5 1 1 -1
O4,O1 1 1 -1
O4,O2 1 1 -1
O4,O3 -1 -1 -1
O4,O5 -1 -1 1
O5,O1 -1 1 -1
O5,O2 -1 1 -1
O5,O3 -1 1 -1
O5,O4 1 -1 1

3 types of bridge elements (e.g., girder, sheer key etc.)

5 objects in the model

3 types of features

E1,E1 E1,E2 E1,E3 E2,E1 E2,E2 E2,E3 E3,E1 E3,E2 E3,E3
O1,O2 1 3 -3 1 -5 2 -3 2 1
O1,O3 -5 1 -3 2 -3 -3 2 2 -2
O1,O4 -2 3 -3 5 3 -1 -5 -2 -2
O1,O5 -1 5 1 5 2 1 3 2 1
O2,O1 -3 4 2 0 1 -1 -4 3 -5
O2,O3 -1 3 5 -5 0 0 -3 4 -2
O2,O4 1 3 -4 4 0 4 -1 5 -5
O2,O5 -5 -2 -1 0 1 3 2 0 1
O3,O1 -3 5 0 -2 -3 1 5 -1 5
O3,O2 4 1 -2 3 -2 3 1 0 -1
O3,O4 -2 5 -2 0 -5 4 5 2 -2
O3,O5 -2 -5 -4 3 -2 -3 1 1 -2
O4,O1 -4 1 0 -4 4 -5 -5 1 -4
O4,O2 5 2 5 -5 3 -4 -4 -2 -5
O4,O3 -5 0 3 1 4 -1 2 5 1
O4,O5 -1 -3 3 -5 3 2 -5 -5 -5
O5,O1 1 5 2 5 1 5 0 0 1
O5,O2 -3 -4 0 4 5 0 1 -4 2
O5,O3 -5 0 5 3 -1 4 2 4 2
O5,O4 3 5 -5 5 1 -4 -1 3 2

obj1?=element1

2n(m-1) relations

         m    :     n

SeeBIM 2.0b - example result

© 2016, Dr. Ling Ma 

All the 331 objects in this bridge model are correctly identified

Ma, L., R. Sacks, U. Kattel and T. Bloch, Building Model Object Classification using Geometric Features and Pairwise Spatial. Computer-aided Civil and Infrastructure Engineering, in preparation.

SeeBIM 3.0

© 2016, Dr. Ling Ma 

Machine learning:

Classifier: 3 * Feature1 ^ Feature2 + Feature3 / Feature4

Feature1 Feature2 Feature3 Feature4 Type
Obj 1 1 0 20.5 a Type A
Obj 2 -1 1 40 b Type B
Feature1 Feature2 Feature3 Feature4 Type
Obj 1,001 ... ... ... ... Type ?
Obj 1,002 ... ... ... ... Type ?

SeeBIM 4.0?

© 2016, Dr. Ling Ma 

Object Type
Obj 1 Type A
Obj 2 Type B
Obj 3 Type C

Deep learning:

Object Type
Obj 10,001 Type ?
Obj 10,002 Type ?
Obj 10,003 Type ?

Enrichment of other information

© 2016, Dr. Ling Ma 

Supplementing information:

  • Bridge grids
  • Span
  • Assembly

 

Filling in missing objects or fixing their shape caused by occlusion. such as:

  • Bearings
  • Girders
  • Transverse beams

Transformation among Data, Information and Knowledge

 

Data

Information

Knowledge

Semantic enrichment for BIM - SeeBIM

© 2016, Dr. Ling Ma 

Data

Information

Knowledge

Automated generating BIM models of earthquake damaged buildings

© 2016, Dr. Ling Ma 

Modeling damaged reinforced concrete objects

© 2016, Dr. Ling Ma 

Specimen

Four-story Reinforced Concrete and Post-Tensioned Concrete Buildings, December 2010 (from  E-defense)

National Building Research Institute @ Technion

Data!!!

© 2016, Dr. Ling Ma 

By Jiashu Liang

By Ashrant Aryal

By Ashrant Aryal

© 2016, Dr. Ling Ma 

Laser scanner emulator

© 2016, Dr. Ling Ma 

Experiment setup

© 2016, Dr. Ling Ma 

Structure transformation

  • Mapping structural cells
  • Locating the building elements in the scan
  • Compilation of as-damaged BIM model

©2016, Dr. Ma, Ling 

Transformation among Data, Information and Knowledge

 

Synthetic Data

Information

Knowledge

Automated generation BIM model of earthquake damaged building

© 2016, Dr. Ling Ma 

Synthetic Data

Information

Knowledge

Investigation of construction workflow using Agent-based simulation

Previous work

Lola Ben-Alon, MSc, “Simulating and Visualizing the Flow of Trade Crews using Agents and Building Information Models (BIM)”, Civil and Env. Eng., Technion. 2015

© 2016, Dr. Ling Ma 

Relational model based simulation design 

© 2016, Dr. Ling Ma 

Simulation explaination

© 2016, Dr. Ling Ma 

Simulation explaination

© 2016, Dr. Ling Ma 

Result (no information exchange)

© 2016, Dr. Ling Ma 

Result (no information exchange)

© 2016, Dr. Ling Ma 

Result (no information exchange)

© 2016, Dr. Ling Ma 

Result (information flow vs work flow)

© 2016, Dr. Ling Ma 

Transformation among Data, Information and Knowledge

 

Data

Information

Knowledge

Different problems

  • Research methods
  • Data availability
  • Controlled experiments
  • Verifiability

© 2016, Dr. Ling Ma 

Thank you!

Made with Slides.com