医学图像配准 是指对于一幅医学图像寻求一种 (或一系列 )空间变换 ,使它与另一幅医学图像上的对应点达到空间上的一致。 这种一致是指人体上的同一解剖点在两张匹配图像上有相同的空间位置。
相似性测度是一个跟变换有关并借助两幅图像数据计算出的用来衡量相似程度的函数
最后通过一种数学优化算法找到该函数的最优解,即变换。
在医学图像配准中,还可以根据以下方式:
对齐的质量由距离或相似性度量S定义,例如平方差之和(SSD),相关比或互信息(MI)度量。均方差(MSD) 规范化互信息(NMI)Kappa统计(KS)
计算配准后分割解剖结构的重叠。 重叠越好,配准越好。 为了测量重叠,通常使用骰子相似系数(DSC)
其中X和Y表示二进制标签图像,和| ·| 表示等于1的体素数。较高的DSC表示较好的对应关系。 值1表示完全重叠,值0表示完全不重叠。
not always suitable for biomedical images, since there are few reliable and distinguishable features (e.g. corners) and weak constraints on the deformation field
(e.g. Distinctive image features from scale-invariant keypoints )
methods based on minimizing a pixel-based image similarity criterion, are often slow .
Luckily, it turns out that criterion evaluation can be simplified, without compromising registration accuracy too much
(e.g. Fast Registration by Boundary Sampling and Linear Programming)
Traditional methods to find the optimal deformation field mapping two images rely on the optimization of a matching criteria controlling the local correspondence of the voxel intensities.
These methods usually have several drawbacks:
Most existing registration algorithms iteratively optimize a transformation based on an energy function.
The optimization problem is typically written as:
F , M denote the fixed and moving images, and denote the registration field.
is a displacement vector field, specifying
the vector offset from F to M for each voxel.