This presentation: plu.sh/dhtours
Digital humanities
Digital literary studies
Computational literary studies
According to Jannidis (2020), CLS have three main features:
Text
Formalisation
Modelling
<body>
<div type="act">
<head>Die Erste Abhandelung.</head>
<div type="configuration">
<stage>Der Schauplatz lieget voll Leichen-Bilder / Cronen / Zepter / Schwerdter etc. Vber dem Schau-Platz öffnet sich der Himmel / vnter dem Schau-Platz die Helle. Die Ewigkeit kommet von dem Himmel / vnd bleibet auff dem SchauPlatz stehen.</stage>
<sp who="#ewigkeit">
<speaker>Ewigkeit.</speaker>
<l>Die Ihr auff der kummerreichen Welt</l>
<l>Verschrenckt mit Weh' vnd Ach vnd dürren Todtenbeinen.</l>
<l>Mich sucht wo alles bricht vnd felt /</l>
<l>Wo sich Eu'r ichts / in nichts verkehrt / vnd eure Lust in herbes Weinen!</l>
<l>Ihr Blinden! Ach! wo denckt jhr mich zu finden!</l>
<l>Die jhr vor mich was brechen muß vnd schwinden /</l>
<l>Die jhr vor Warheit nichts als falsche Träum' erwischt!</l>
<l>Vnd bey den Pfützen euch an stat der Quel erfrischt!</l>
<l>Ein Irrlicht ists was Euch O sterbliche! verführet</l>
<l>Ein thöricht Rasen das den Sinn berühret.</l>
<l>Wil jmand Ewig seyn wo man die kurtze Zeit</l>
<pb n="13"/>
<l>Die Handvoll Jahre die der Himmel euch nachsiht</l>
<l>Diß Alter das vergeht in dem es blüht</l>
<l>In Vnmuth theilt vnd in Vergängligkeit?</l>
Operationalizing means building a bridge from concepts to measurement, and then to the world. In our case: from the concepts of literary theory, through some form of quantification, to literary texts (Moretti 2013: 13)
A practical overview: CLS INFRA Survey of Methods in Computational Literary Studies (= Schöch, Dudar, and Fileva, eds. (2023))
An attempt at taxonomy (Herrmann et al. 2023):
Textometry (Hyberbase, TXM)
Stylometry (Delta & Co.)
Semantic text extraction (sentiment analysis, topic modelling, word embeddings)
CLS ≈ DLS (digital literary stylistics)?
2017-
+4k plays
2023-
+330k poems
2017-
+2k novels
☞ Oleg Sobchuk, "Evolution of Modern Literature and Film", The Oxford Handbook of Cultural Evolution (= Sobchuk 2023)
The core idea of cultural evolution is that cultural change constitutes an evolutionary process that shares fundamental similarities with – but also differs in key ways from – genetic evolution. Humans and other cultural species are the joint product of both our genetic and cultural inheritances. (CES 2025)
[C]lose reading produces only anecdotal evidence — suitable for conducting nuanced case studies, but not for testing large-picture theories. [...]
Even the early scholars of literary evolution acknowledged the importance of moving beyond the anecdotal — towards [...] large scale quantitative analysis of trends (Sobchuk 2023, n.p.)
Results from my PhD dissertation:
Evolutive Dynamics in Early Modern European Drama: A Computational Approach
(Potsdam/Padova, 2021-2024)
How did the different European dramatic literatures develop their own peculiar features during the early modern era?
Corneille, Cinna (1639)
Shirley, The Gentleman of Venice (1639)
Franco Moretti
"Modern European literature: A geographical sketch"
New Left Review
206 (1994), 86-86
Starting assumption: the evolutionary mechanism of literary history is similar to the one taking place in biology:
1400 1500 1600 1700 1800
According to Moretti, the same process of speciation happened in European drama*
🇫🇷
🇩🇪
🇮🇹
🇬🇧
🇪🇸
* he actually speaks of tragedy, but we could try to generalise it
Common model of European drama (based on Seneca and medieval plays)
Discontinuous, fractured, the European space functions as a sort of archipelago of (national) sub-spaces, each of them specializing in one formaI variation.
(Moretti 2013 [1994]: 12)
150 plays in five languages (🇮🇹 🇫🇷 🇪🇸 🇩🇪 🇬🇧)
time span: 1561-1710 (150 years)
purposefully non-canonical approach
Birth locations for the corpus authors (Wikidata)
"Measurements can be taken of any quantifiable aspect of a text, but figuring out the significance of that metric to an understanding of the text, or better, mapping that metric onto a preexisting critical concept (such as style, plot, or theme), is crucial to making sense of what is being measured" (Algee-Hewitt 2017: 759)
(according to Kretz 2012: 105)
DIALOGUE
(main space for the transmission of information)
"Being dialogic is the most immediate feature of a drama" (cf. A. W. Schlegel)
CHARACTER
Understood "not [as] a physical entity, but rather [as] a literary construct" (Pfister)
PLOT
"a connection of events" (Lessing), sjužet (Formalists = the fabula defamiliarised, cf. Shklovsky)
(via the DraCor API or computed independently)
Type | Features |
---|---|
Network | Size; Average clustering coefficient; Density; Average path length; Average degree; Diameter; Maximum degree; Number of edges; Number of connected components; Ratio, average degree to maximum degree; Ratio, maximum degree to number of characters; Weighted degree distribution; Protagonism; Mediateness |
Cast and speech | Average characters per scene; Average length of character speech; Speech intensity; Gendered speakers; Collective speakers |
Size | Number of acts; Number of Segments; Word count, whole text; Word count, spoken text; Word count, stage directions; Number of prose lines; Number of verse lines |
Plot | All-in index; Final scene size; Drama change rate |
My approach: building vectors (embeddings) and using them as proxies for the plays themselves
Example_play_1 = {10, 2, 0.5714, 3, 16792}
Example_play_2 = {26, 6, 0.3422, 2, 40098}
num_speakers | num_speakers_ groups |
density (SNA) | avg_degree (SNA) | word_count_sp | |
Example_play_1 | 10 | 2 | 0.5714 | 3 | 16792 |
Example_play_2 | 26 | 6 | 0.3422 | 2 | 40098 |
Computing Euclidean distances between vectors within 30 year-long timeframes according to two different procedures
Increase in distance = formal diversification (?)
Representing play vectors as points in a coordinate system (via dimensionality reduction methods, e.g. PCA)
play_8
play_5
play_4
play_3
play_2
play_1
play_7
play_6
In this way, it is possible to identify clusters based on formal/structural similarities
1561 (similarity)
🇫🇷
🇩🇪
🇬🇧
🇮🇹
🇪🇸
1710 (differentiation)
At the beginning of the timeframe...
... and at its end.
Algee-Hewitt, M. (2017). "Distributed character: Quantitative models of the English stage, 1550–1900". New Literary History, 48(4), 751-782.
Allison, S.; Heuser, R.; Jockers, M.; Moretti, F.; Witmore, M. (2011). "Quantitative Formalism: An Experiment". Stanford Literary Lab Pamphlet 1.
Fischer, F., Börner, I.; Göbel, M.; Hechtl, A.; Kittel, C.; Milling, C., Trilcke, P. (2019). "Programmable Corpora: Introducing DraCor, an Infrastructure for the Research on European Drama". In: DH2019 Book of Abstracts. Università di Utrecht, 2019.
Jannidis, F. (2022). "Digitale Literaturwissenschaft. Zur Einführung". In: Jannidis, F. (ed.), Digitale Literaturwissenschaft. Stoccarda: J. B. Metzler, pp. 1-16.
Lvoff, B. (2021). "Distant Reading in Russian Formalism and Russian Formalism in Distant Reading". Russian Literature, 122, 29-65.
Moretti, F. (1993). "La letteratura europea", in P. Anderson, W. Barberis, e C. Ginzburg, eds., Storia d'Europa, vol. I. Torino: Einaudi, pp. 837–66.
Moretti, F. (2000). "The slaughterhouse of literature". MLQ: Modern Language Quarterly, 61(1), 207-227.
Moretti, F. (2013). Distant reading. Londra: Verso.
Moretti, F. (2013). " 'Operationalizing': or, the function of measurement in modern literary theory". Stanford Literary Lab Pamphlet 6.
Schöch, C.: Dudar, J.; Fileva, E., eds. (2023). Survey of Methods in Computational Literary Studies, v1.1.0, Trier: CLS INFRA.
Sobchuk, O. (2023). "Evolution of Modern Literature and Film", in Jamshid J. Tehrani, Jeremy Kendal, and Rachel Kendal, eds.), The Oxford Handbook of Cultural Evolution (online).
Willand, M., Trilcke, P., Schöch, C., Rißler-Pipka, N., Reiter, N., & Fischer, F. (2017). "Aktuelle Herausforderungen der Digitalen Dramenanalyse". In DHd 2017 Book of Abstracts.