arXiv:1302.5843v3 [cond-mat.stat-mech]

Ising formulations of many NP problems

arXiv:1302.5843v3 [cond-mat.stat-mech]

Ising formulations of many NP problems

?

?

?

?

?

?

?

?

?

?

?

?

?

Ising model?

Quantum Version?

How is related to TSP?

the ising model

Ludmila Augusta Soares Botelho

History time: around 100 years ago

Is there is a very simple model to describe ferromagnetism?

Is there a phase transition in the magnetism of a linear sequence of little magnetic moments where only neighbors are energetically coupled?

(Ferro)magnetism

Wilhelm Lenz

{

{

{

$$z$$

History time: around 100 years ago

(Ferro)magnetism

Wilhelm Lenz

 Ernst Ising

?

!

Wilhelm Lenz

 Ernst Ising

?

 Model

It does not have phase transition!

... what about some quantum mechanics?

... more dimensions?

History time: around 100 years ago

( the best time)

Why do we care about Statistical Mechanics?

Physics time

( the best time)

Physics time

Why do we care about Statistical Mechanics?

It relates the

 microscopic 

with the

MACROSCOPIC

How is that possible?

$$(x,y,z)$$

$$m$$

$$m$$

$$\vec{p}$$

$$(x,y,z, p_x,p_y,p_z)$$

$$(x,y,z)$$

$$\vec{v}$$

Statistical  mechanics

$$m$$

$$(x,y,z, p_x,p_y,p_z)$$

  • Microstate

Statistical  mechanics

mm

j=(x,y,z,px,py,pz)j=(x,y,z, p_x,p_y,p_z)

  • Microstate

j=(x1,...,x3np1,...,p3N)j=(x_1,..., x_{3n} p_1,...,p_{3_N})

- For NN particles:

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Statistical  mechanics

mm

  • Microstate

j=(x1,...,x3np1,...,p3N)j=(x_1,..., x_{3n} p_1,...,p_{3_N})

- For NN particles:

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Statistical  mechanics

mm

  • Microstate

j=(x1,...,x3np1,...,p3N)j=(x_1,..., x_{3n} p_1,...,p_{3_N})

- For NN particles:

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Statistical  mechanics

  • Microstate

j=(x1,...,x3np1,...,p3N)j=(x_1,..., x_{3n} p_1,...,p_{3_N})

- For NN particles:

thermodynamic Quantities 

  • Macrostate

- Equilibrium observable state

microstate

thermodynamic Quantities 

  • Macrostate

Condensed matter physics

The bridge

$$\Omega(E) =\text{Number of Microstates} $$ 

$$S = -k_b\sum_i p_i  \ln p_i$$

  • Entropy

$$S = k_b\ln W$$

$$W = \frac{N!}{\prod_i N_i }$$

$$S = k_b\ln \Omega$$

- Gibbs Entropy

- Postulate: All microstates are equally probable

The bridge

  • Entropy

$$S = k_b\ln \Omega$$

- State Function/Fundamental Equation

$$S = S(U,V,N)$$

$$ \frac{1}{T}= \frac{\partial S}{\partial U}$$

$$ \frac{p}{T}= \frac{\partial S}{\partial V}$$

$$ \frac{-\mu}{T}= \frac{\partial S}{\partial N}$$

temperature

pressure

chemical potential

The bridge

  • Helmholtz Free Energy

$$F= U - TS$$

$$U =-\vec{\mu} \vec{H}$$

$$m =-\left. \left( \frac{\partial F}{\partial H} \right)\right |_{T,N}$$

$$z$$

$$\vec{H}$$

- Legendre Transformation for internal energy \(U = Q +W \)

$$\chi (T,H) =-\left. \left( \frac{\partial F}{\partial H} \right)\right |_{T,N}$$

$$U =-\mu_0 {H}$$

$$ \rightarrow \frac{CH}{T}$$

$$M =N\langle{m} \rangle$$

$$\mathrm{d}F= M\mathrm{d}H - S\mathrm{d}T$$

Statistical Mechanics

Why do we care about Statistical Mechanics?

It relates the

 microscope 

with the

MACROSCOPE

  • Few assumptions

Canonical Ensemble

S

R

~

~

~

  • Probability of particular microscopic state

$$P_j = \frac{e^{-\beta E_j}}{Z} $$

$$Z = \sum_{\sigma}e^{-\beta E_\sigma}$$

ustandssumme

  • Partition function 

(T, V, N)

  • Few assumptions

Canonical Ensemble

S

  • Probability of particular microscopic state

$$P_j = \frac{e^{-\beta E_j}}{Z} $$

$$Z = \sum_{\sigma}e^{-\beta E_\sigma}$$

ustandssumme

  • Partition function 

(T, V, N)

  • Free Energy
  • Systems Total Energy
  • Heat Capacity

Connection with Thermodynamics

  • Entropy
  • Magnetic Susceptibility
  • Magnetization

R

Statistical Mechanics

quiz: why the "-" signal?

Systems energy

$$\mathcal{H} = -J \sum_{i} s_i s_{i+1} - h\sum_i^N s_i$$

  • Hamiltonian

{

interaction

{

external field

$$Z=?$$

$$z$$

$$h$$

$$\cdots$$

$$\cdots$$

{

Free Energy

Magnetization

Partition Function

1D

quantum mechanics

$$\mathcal{H} = -J \sum_{i} s_i s_{i+1} - h\sum_i^N s_i$$

$$\mathcal{H} = -J \sum_{i} \sigma_i^z \sigma_{i+1}^z $$

Pauli Matrices

Reduces to classical version

$$\mathcal{H} = -J \sum_{i} \sigma_i^z \sigma_{i+1}^z - h\sum_i^N \sigma_i^z$$

\sigma^x= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\sigma^y= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\sigma^z= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

$$E = -J \sum_{i} \sigma_i \sigma_{i+1} $$

\{

transverse field

energy levels  \( \sigma_i =\pm 1 \)

diagonal!

\{
  • It has phase transition!

-Ferromagnetic vs Paramagnet

$$ \sigma_i^\alpha = I^{\otimes i-1} \otimes \sigma^\alpha I^{\otimes N-i}  $$

$$\mathcal{H} = -J \sum_{i} \sigma_i^z \sigma_{i+1}^z - h\sum_i^N \sigma_i^x$$

quantum mechanics

$$\mathcal{H} = -J \sum_{i} \sigma_i^z \sigma_{i+1}^z - h\sum_i^N \sigma_i^x$$

$$\mathcal{H} = - \frac{1}{2} \sum_{i}^N \left[ J_x \sigma_i^x \sigma_{i+1}^x +J_y \sigma_{i}^y \sigma_{i+1}^y+  J_z \sigma_i^z \sigma_{i+1}^z - h\sigma_i^z\right]$$

$$\mathcal{H} = - \frac{1}{2} \sum_{i}^N \left[ J_x \sigma_i^x \sigma_{i+1}^x +J_y \sigma_{i}^y \sigma_{i+1}^y+  - h\sigma_i^z\right]$$

$$J_x = \left( \frac{1+ \gamma}{2} \right)$$

$$J_y = \left( \frac{1- \gamma}{2} \right)$$

- Tensor Networks

- Quantum Many-Body Problems

  • Heisenberg Model
  • XY Model
  • 1D Quantum Ising Model

$$\mathcal{H} = -J \sum_{i} \sigma_i^z \sigma_{i+1}^z - h\sum_i^N \sigma_i^x$$

$$J > 0$$

$$J < 0$$

$$J = ?$$

$$\mathcal{H} = -J \sum_{i} \sigma_i^z \sigma_{i+1}^z$$

Ground state

Spin Glass Model

$$\mathcal{H} = - \sum_{i,j} J_{i,j}\sigma_i^z \sigma_{j}^z$$

\(\leq\)

}

$$min$$

?

magnet

Thank you!

Dziękuję Ci!

Obrigada!

धन्यवाद!

 Teşekkür ederim!

Made with Slides.com