Ludmila Botelho
Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
Analog computers
Hybrid (analog + digital) computers
Digital computers
Quantum Computer
Quantum Computer
# WHAT IS A QUBIT?
$$\vert \psi \rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} $$
\(|\alpha|^2+|\beta|^2=1\)
(\(\mathcal{l}_2\)-norm)
\(\alpha,\beta\in \mathbb{C}\)
# QUANTUM MECHANICS RECAP
Noisy
Intermediate-
Scale
Quantum computing
Where is \(\omega\)?
N
What are prime factors of
?
$$ H_P = - \sum_{i > j} J_{ij}Z_i Z_j - \sum _i h_iZ_i, $$
2-Local Ising model
Pauli \(Z\) Gates on \(i\)-th qubit
Proposition: Find the minimum energy in a landscape
$$ H(t) = \left(1-\frac{t}{T}\right)H_0+ \frac{t}{T}H_P $$
\( s_i \in \{-1,+1\} \)
\( s_i \leftrightarrow x_i = \frac{1-s_i}{2} \)
\( x_i \in\{0,1\} \)
Minimizing quadratic functions
$$ y=x^TQx $$
Penalty Method
$$ \text{min } y=f(x) $$
$$ \text{subject to: } x_1 +x_2 + x_3= 1 $$
$$\text{min }y=f(x)+P\left(\sum_{i=1}^3 x_i -1\right)^2 $$
Binary variables
Constants
Initialize the annelear: \(|+^n\rangle\)
$$ H_{QA}(t) = g(t/ \tau )H_{\text{mix}}+ h(t/ \tau)H$$
Adiabatic evolution
Ground state of H (hopefully)
$$ | 0110\dots 010\rangle$$
Ground state of:
$$ H_{\text{mix}} = \sum_i X_i$$
\(g(t/ \tau )H_{\text{mix}}+ h(t/ \tau)H\)
Trotter Formula
Quantum Approximate Optimization Algorithm
$$|p,r\rangle = \prod_{i=1}^k \exp(-\mathrm{i} p_iH_{\rm mix})\exp(-\mathrm{i} r_iH) |+^n\rangle $$
Inspired by Quantum Annealing
Error mitigation
Better search in the feasible space
By homotopic optimization
$$ A\sum_{t} \left(\sum_v b_{tv} -1\right)^2 + A\sum_{v} \left(\sum_t b_{tv} -1\right)^2 + B\sum_{t,v,w} W_{v,w}b_{t,v}b_{t+1,w}$$
QUBO formulation for n cities
Cost of route:
\(\pi: \{ 0,\cdots,n-1\} \rightarrow \{ 0,\cdots,n-1\} \)
\(\sum_{t=0}^{n-1}W_{\pi(t),\pi(t+1)} =\sum_{t,v,w}W_{v,w} \delta(\pi(t),v) \delta(\pi(t+1),w) \)
city visited at time \( t\)
$$0$$
$$1$$
$$2$$
$$3$$
$$4$$
\(W_{1,2}\)
$$0$$
$$1$$
$$2$$
$$3$$
$$4$$
\(W_{1,2}\)
time \( t\)
$$0$$
$$1$$
$$2$$
$$3$$
$$4$$
$$00001 $$
$$10000 $$
$$000$$
$$100$$
binary
one-hot
$$00010 $$
$$00100 $$
$$01000 $$
$$001$$
$$010$$
$$011$$
QUBO
HOBO
\(n^2 \; \rightarrow \;n!/2^{n^2} \approx2^{-n^2}\)
\(n\log_2 n \; \; \rightarrow \; n!/2^{n\log_2 n} \approx 2^{-\Theta(n)}\)
VS
Adam Glos, Aleksandra Krawiec, and Zoltán Zimborás. "Space-efficient binary optimization for variational computing." npj Quantum Information 8, 39 (2022)
HOBO
QUBO
HOBO
Available for Quantum Alternating Operator Ansatz
We detect transfer between infeasible and feasible space
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
Success probability of measuring the quantum state on the feasible space (left). The area spans the mean energy \( \pm \) standard deviation over 40 instances of TSP. Simulation were done for TSP instances with four cites.
My contribuition: circuit design and code
Initialize the quantum state
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(|0 \rangle\)
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
Post-Selection
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(H_{\text{mix}}\)
\(V\)
\(V^\dagger\)
QUBO
\(V\)
\(V\)
\(V\)
\(V^\dagger\)
\(V^\dagger\)
\(V^\dagger\)
PS
PS
PS
PS
APPLICABLE FOR OTHER QAOA SCHEMES!
Comparison of various error-mitigation methods. The red dashed line corresponds to "do nothing" approach. The blue solid line describes the effect with the post-selection at the end only. Finally, the green dotted line includes post-selection for both final measurement and mid-circuit measurement. Areas span the minimum and maximum value obtained. Top row shows the deviation in the energy, relative to the scenario proposed in the paper. Bottom row shows the probability of accepting circuit run.
\( \frac{E - E_{pure}}{E_{ours} - E_{pure}}\)
Ludmila Botelho, Adam Glos, Akash Kundu, Jarosław Adam Miszczak, Özlem Salehi, and Zoltán Zimborás, Error mitigation for variational quantum algorithms through mid-circuit measurements, Phys. Rev. A 105, 022441 (2022)
Text
My contributions: writing, coding and experiments
Akash Kundu, Ludmila Botelho, and Adam Glos, Hamiltonian-oriented homotopy quantum approximate optimization algorithm, Phys. Rev. A 109, 022611 (2024)
"...might compose elaborate and scientific pieces of music of any degree of complexity or extent"
4
1
rest
measure
Durations
2
Pitches
C
D
A
E
G
F
B
C
$$\sum_{j \in P} x_{i,j} = 1$$
How to define the binary variables?
$$\left ( 1- \sum_{j \in P} x_{i,j} \right )^2$$
$$x_{i,C} + x_{i+1,D} \leq 1$$
$$x_{i,C} + x_{i+1,C} + x_{i+2,C} \leq 2 $$
$$P=\{p_1,p_2,\dots,p_k \}$$
\(x_{i,j}\) for \(i \in [n]\) and \(j \in P\)
$$P=\{\mathtt{C}, \mathtt{D}, \mathtt{E}, \mathtt{G}\}$$
Optimization
$$ -\sum_{ \substack{i\in [n-1] \\ j,j' \in P}} W_{j,j'} x_{i,j} x_{i+1,j'} $$
weights
Exemple: Ode to Joy excerpt
$$W_{F\#4,E4} = 2, $$
$$W_{F\#4,F\#4} = 2,$$
$$W_{F\#4,G4} = 1$$
$$\sum_{\substack{i \in [n] \\ j \in D}} d(j)y_{i,j} = L$$
$$ \sum_{j \in D} y_{i,j} = 1$$
$$D = \{1,2,3,4\}$$
$$j \in D$$
$$\sum_{j \in P} x_{i,j} = 3$$
$$(1-x_{i,p_{i_j}})$$
G
E
D
G
B
B
G
Ashish Arya, Ludmila Botelho, Fabiola Cañete, Dhruvi Kapadia and Özlem Salehi, Applications of Quantum Annealing to Music Theory. Quantum Computer Music, Springer: Methods and Advanced Concepts, pages 373-406 (2022)
Boléro (Ravel, Maurice)
Monophonic
Polyphonic
Phrase Identification
Huang, Jiun-Long, Shih-Chuan Chiu, and Man-Kwan Shan. "Towards an automatic music arrangement framework using score reduction." ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) 8.1 (2012): 1-23.
Phrase Identification
Job Scheduling
Job Scheduling
Job Scheduling
- Pitch and rhythm
- Maximize information
$$x_{ij} =\begin{cases}1,& \text{$j$'th phrase of track $i$ is selected}\\ 0, & \text{otherwise.}\end{cases} $$
$$- \sum_{i=1}^N\sum_{j=1}^{P_i} e(p_{ij})x_{ij}$$
$$E(s) = - \sum_{i=1}^N P(x_i)\ln P(x_i)$$
$$x_{ij} = 1 \iff m_{ik}=1 k \in S_{ij}$$
$$\sum_{i=1}^N m_{ik} = M \ \ \text{for} \ \ k=1,\dots,K $$
Set of measures in phrase \(j\) of \(i\)’th track
Number of measures
Number of tracks after reduction
binary variable
Experiment results for entropy varying chain strength and annealing times. The dashed lines correspond to the simulated annealing best result and the dotted lines to the hybrid solver solution. The square, round, and star dots correspond to chain strength values 0.1, 0.2, and 0.3, respectively
My contributions: main concept, QUBO formulation, code, experiments...
Ludmila Botelho and Özlem Salehi, Fixed interval scheduling problem with minimal idle time with an application to music arrangement problem, arXiv:2310.14825
None of the methods investigated shows advantage over classical algorithms !