Multithreading

in C++ and C#

Máté Cserép

Eötvös Loránd  University, Faculty of Informatics
May 2024, Budapest

Parallel computing

  • Computers can carry out multiple tasks parallelly.
  • Parallel computing is often a requirement for even simple applications
    • e.g. a basic word processor should handle user input regardless whether it is being busy with updating the user interface, semantic analysis, etc.
  • C++ and C# have multiple tools to support parallel programming.

 

Parallel computing

Process

  • Contains a complete execution environment and runtime resources, like memory.
  • By default our C++/C# program runs as a single process.

Thread

  • A process may contain multiple threads.
  • ​Which share virtual address space and system resources.
  • Threads are more lightweight compared to processes.
  • Each process starts with an initial thread, often called primary or main thread.

We will focus on multi thread programming.

Multithreading in C++

Multithreading is just one damn thing after, before, or simultaneous with another.

Andrei Alexandrescu

Multithreading in C++

Beyond the errors which can occur in single-threaded programs,
multithreaded environments are subject to additional errors:

  • Race conditions
  • Deadlock, livelock
  • Priority failures (priority inversion, starvation, etc.)

Moreover testing and debugging of multithreaded programs are harder. Multithreaded programs are non-deterministic. Failures are often non-repeatable. Debugged code can produce very different results then non-debugged ones. Testing on single processor hardware may produce different results than testing on multiprocessor hardware.

Atomicity

int x, y;

// thread 1               
x = 1;
y = 2;

In C++11 this is undefined behaviour, in C++98/03 not even that.



// thread 2                  
std::cout << y << ", ";
std::cout << x << std::endl;
int x, y;
std::mutex x_mutex, y_mutex;

// thread 1              
x_mutex.lock();
x = 1;
x_mutex.unlock();
y_mutex.lock();
y = 2;
y_mutex.unlock();

Workaround with mutexes:




// thread 2                  
y_mutex.lock();
std::cout << y << ", ";
y_mutex.unlock();
x_mutex.lock();
std::cout << x << std::endl;
x_mutex.unlock();
std::atomic<int> x, y;

// thread 1
x.store(1);
y.store(2);  

Workaround with atomic:



// thread 2
std::cout << y.load() << ", ";   
std::cout << x.load() << std::endl;

Threads

namespace std
{
  class thread
  {
  public:
    typedef native_handle /* ... */;
    typedef id /* ... */;

    thread() noexcept;               // does not represent a thread
    thread(thread&& other) noexcept; // move constructor
    ~thread();                       // if joinable() calls std::terminate()

    template <typename Function, typename... Args> // copies args to thread local
    explicit thread(Function&& f, Arg&&... args);  // then execute f with args

    thread(const thread&) = delete;             // no copy
    thread& operator=(thread&& other) noexcept; // move
    void swap(thread& other);                   // swap 

    bool joinable() const; // thread object owns a physical thread 
    void join();           // blocks current thread until *this finish
    void detach();         // separates physical thread from the thread object

    std::thread::id get_id() const;              // std::this_thread
    static unsigned int hardware_concurrency();  // supported concurrent threads
    native_handle_type native_handle();          // e.g. thread id
  };
}

Typesafe parameter passing to the thread

void f(int i, const std::string& s);

std::thread t(f, 3, "Hello");

Creates a new thread of execution with t, which calls f(3, "hello"), where arguments are copied (as is) into an internal storage (even if the function takes them as reference).

If an exception occurs, it will be thrown in the hosting thread.

class f
{
public:
    f(int i = 0, std::string s = "") : _i(i), _s(s) { }
    void operator()() const
    {
       // background activity
    }
    int _i;
    std::string _s;
};

std::thread t(f());              // Most vexing parse (Scott Meyers: Effective STL)
std::thread t((f());             // OK
std::thread t((f(3, "Hello")));  // OK

f can be any callable function, e.g. operator():

Passing parameter by reference

void f(int i, const std::string&)
{
    std::cout << "Hello Concurrent World!" << std::endl;
}

int main()
{
    int i = 3;
    std::string s("Hello");

    // Will copy both i and s
    //std::thread t(f, i, s);

    // We can prevent the copy by using reference wrapper
    std::thread t(f, std::ref(i), std::ref(s));

    // If the thread destructor runs and the thread is joinable, then 
    // std::system_error will be thrown.

    // Use join() or detach() to avoid that.
    t.join();
    return 0;
}

By default all arguments are copied by value, even if the function takes them as reference.

Alternative destructor strategies

  • Implicit join: the destructor waits until the thread execution is completed. Hard to detect performance issues.

 

  • Implicit detach: destructor runs, but the underlying thread will still run. Destructor may free memory but the thread may try to access them.

Scott Meyers

Possible problems

struct func
{
    int& i;
    func(int& i_) : i (i_) { }

    void operator()()
    {
        for(unsigned int j = 0; j < 1000000; ++j)
        {
            do_something(i);  // i may refer to a destroyed variable
        }
    }
};

int main()
{
    int some_local_state = 0;
    func my_func(some_local_state);
    std::thread my_thread(my_func);
    my_thread.detach();  // don't wait the thread to finish
    return 0;
}  // some_local_state is destroyed, but the thread is likely still running.

Still, there is possible to make wrong code (of course, this is C++).
Better to avoid pointers and references, or join().

Scoped thread

class scoped_thread
{
  std::thread t;
public:
  explicit scoped_thread(std::thread t_): t(std::move(t_))
  {
    if(!t.joinable())
      throw std::logic_error(“No thread”);
  }
  ~scoped_thread()
  {
    t.join();
  }
  scoped_thread(scoped_thread const&)=delete;
  scoped_thread& operator=(scoped_thread const&)=delete;
};

struct func;

void f()
{
  int some_local_state;
  scoped_thread t(std::thread(func(some_local_state)));
  do_something_in_current_thread();
}

Source: C++ Concurrency In Action, by Anthony Williams

Implementation can also be found in the Boost Library
<boost/thread/scoped_thread.hpp>

Possible problems

void f(int i, const std::string& s);

std::thread t(f, 3, "Hello");
void f(int i, const std::string& s);

void bad(int some_param)
{
    char buffer[1024];
    sprintf(buffer, "%i", some_param);
    std::thread t(f, 3, buffer);
    t.detach();
}

void good(int some_param)
{
    char buffer[1024];
    sprintf(buffer,"%i",some_param);
    std::thread t(f, 3, std::string(buffer));
    t.detach();
}

"Hello" is passed to f as const char * and converted to std::string in the new thread. This can lead to problems, e.g.:

Threads with STL

void do_work(unsigned id);

int main()
{
  std::vector<std::thread> threads;
  for(unsigned i=0;i<20;++i)
  {
    threads.push_back(std::thread(do_work,i));
  }

  std::for_each(threads.begin(), threads.end(), 
                [](std::thread& t) { t.join(); }); // join all threads

  std::for_each(threads.begin(), threads.end(),    // alternative:
                std::mem_fn(&std::thread::join));  // generates functor for function
  return 0;
}

std::thread is compatible with the STL containers.

Syncronization objects

std::mutex m;
int sh; // shared data

void f()
{
    /* ... */
    m.lock();
    // manipulate shared data:
    sh += 1;
    m.unlock();
    /* ... */
}

Mutex:

Recursive mutex:

std::recursive_mutex m;
int sh; // shared data

void f(int i)
{
    /* ... */
    m.lock();
    // manipulate shared data:
    sh += 1;
    if (--i > 0) f(i);
    m.unlock();
    /* ... */
}

Syncronization objects

std::timed_mutex m;
int sh; // shared data

void f()
{
  /* ... */
  if (m.try_lock_for(std::chrono::seconds(10))) {
    // we got the mutex, manipulate shared data:
    sh += 1;
    m.unlock();
  }
  else {
    // we didn't get the mutex; do something else
  }
}
void g()
{
  /* ... */
  if (m.try_lock_until(midnight)) {
    // we got the mutex, manipulate shared data:
    sh+=1;
    m.unlock();
  }
  else {
    // we didn't get the mutex; do something else
  }
}

Timed mutex:

Locks

std::list<int> l;
std::mutex     m;

void add_to_list(int value);
{
    // lock acquired - with RAII style lock management
    std::lock_guard<std::mutex> guard(m);
    l.push_back(value);
}   // lock released

Locks support the Resource Allocation Is Initialization (RAII) idiom.

Pointers or references pointing out from the guarded area can be an issue!

Deadlocks

template <class T>
bool operator<(const T& lhs, const X& rhs)
{
  if (&lhs == &rhs)
    return false;

  lhs.m.lock(); rhs.m.lock();
  bool result = lhs.data < rhs.data;
  lhs.m.unlock(); rhs.m.unlock();
  return result;
}

The code below can result in a deadlock when a < b and b < a are simultaneously evaluated on 2 threads.

Avoid deadlocks

  1. Avoid nested locks
  2. Avoid user defined call when holding a lock
  3. Acquire locks in a fixed order

Deadlocks

template <class T>
bool operator<(T const& lhs, X const& rhs)
{
  if (&lhs == &rhs)
    return false;

  // std::lock - locks two or more mutexes
  std::lock(lhs.m, rhs.m);

  // std::adopt_lock - assume the calling thread already has ownership
  std::lock_guard<std::mutex> lock_lhs(lhs.m, std::adopt_lock); 
  std::lock_guard<std::mutex> lock_rhs(rhs.m, std::adopt_lock);

  return lhs.data < rhs.data;
}

A correct solution to avoid deadlock:

With the lock guards, mutexes are released with RAII.

Deadlocks

template <class T>
bool operator<(T const& lhs, X const& rhs)
{
  if (&lhs == &rhs )
    return false;

  // std::unique_locks constructed with defer_lock can be locked
  // manually, by using lock() on the lock object ...
  std::unique_lock<std::mutex> lock_lhs(lhs.m, std::defer_lock);
  std::unique_lock<std::mutex> lock_rhs(rhs.m, std::defer_lock);
  // lock_lhs.owns_lock() now false

  // ... or passing to std::lock
  std::lock(lock_lhs, lock_rhs);  // designed to avoid dead-lock
  // also there is an unlock() member function

  // lock_lhs.owns_lock() now true
  return lhs.data < rhs.data;
}

Another correct solution with different approach:

std::unique_lock can be locked and unlocked.

(It is also moveable, but not copyable, but that is not a factor here.)

Deadlocks

template <class T>
bool operator<(T const& lhs, X const& rhs)
{
  if (&lhs == &rhs )
    return false;

  // designed to avoid dead-lock
  std::scoped_lock lock(lhs.m, rhs.m);
  
  return lhs.data < rhs.data;
}

C++17 simplifies the problem with the introduction of scoped_lock, specifically designed for locking (and releasing) multiple mutexes and the same time in RAII style:

Singleton Pattern: naïve

template <typename T>
class MySingleton
{
public:
  std::shared_ptr<T> instance()
  {
    std::unique_lock<std::mutex> lock(resource_mutex);
    if (!resource_ptr)
      resource_ptr.reset(new T(/* ... */));
    lock.unlock();
    return resource_ptr;
  }
private:
  std::shared_ptr<T> resource_ptr;
  mutable std::mutex resource_mutex;
};

Problem: while the problematic race condition is connected only to the initialization of the Singleton instance, the critical section is executed for every calls of the instance() method. Such an excessive usage of the locking mechanism may cause serious overhead which could not be acceptable.

Singleton Pattern: DCLP

template <typename T>
class MySingleton
{
public:
  std::shared_ptr<T> instance()
  {
    if (!resource_ptr)  // 1
    {
      std::unique_lock<std::mutex> lock(resource_mutex);
      if (!resource_ptr)
        resource_ptr.reset(new T(/* ... */));  // 2
      lock.unlock();
    }
    return resource_ptr;
  }
private:
  std::shared_ptr<T> resource_ptr;
  mutable std::mutex resource_mutex;
};

Problem: load in (1) and store in (2) is not synchronized.

This can lead to a bug with non-atomic pointer or integral assignment semantics; or if an overly-aggressive compiler optimizes resource_ptr (e.g. storing it in a register).

Double-Checked Locking Pattern

Singleton Pattern: call_once

template <typename T>
class MySingleton
{
public:
  std::shared_ptr<T> instance()
  {
    std::call_once(resource_init_flag, init_resource);
    return resource_ptr;
  }
private:
  void init_resource()
  {
    resource_ptr.reset(new T(/* ... */));
  }
  std::shared_ptr<T> resource_ptr;
  std::once          resource_init_flag; // can't be moved or copied
};

std::call_once is guaranteed to execute its callable parameter exactly once, even if called from several threads.

Singleton Pattern: Meyers singleton

class MySingleton;
MySingleton& MySingletonInstance()
{
  static MySingleton _instance;
  return _instance;
}

C++11 guarantees that this is thread safe!

Condition variable

std::mutex                my_mutex;
std::queue<data_t>        my_queue;
std::conditional_variable data_cond;  // conditional variable

void producer() {
  while (more_data_to_produce())
  {
    const data_t data = produce_data();
    std::lock_guard<std::mutex> prod_lock(my_mutex);  // guard the push
    my_queue.push(data);
    data_cond.notify_one(); // notify the waiting thread to evaluate cond.
  }
}

void consumer() {
  while (true)
  {
    std::unique_lock<std::mutex> cons_lock(my_mutex);   // not lock_guard
    data_cond.wait(cons_lock,                           // returns if lamdba returns true 
             [&my_queue]{return !my_queue.empty();});   // else unlocks and waits 
    data_t data = my_queue.front();                     // lock is hold here to protect pop...
    my_queue.pop();
    cons_lock.unlock();                                 // ... until here
    consume_data(data);
  }
}

Classical producer-consumer example:

Condition variable

  • During the wait the condition variable may check the condition any time, but under the protection of the mutex and returns immediately if condition is true.

 

  • Spurious wake: wake up without notification from other thread. Undefined times and frequency, so it is better to avoid functions with side effect. (E.g. using a counter in lambda to check how many notifications were is typically bad.)

Futures and Promises 

  1. Future is a read-only placeholder view of a variable.
  2. Promise is a writable, single assignment container (set the value of future).
  3. Futures are results of asyncronous function calls. When I execute that function I won't get the result, but get a future which will hold the result when the function completed.
  4. A future is also capable to store exceptions.
  5. With shared futures multiple threads can wait for a single shared async result.

Futures

int f(int);
void do_other_stuff();

int main()
{
  std::future<int> the_answer = std::async(f, 1);
  do_other_stuff();
  std::cout<< "The answer is " << the_answer.get() << std::endl;
  return 0;
}

The std::async() executes the task either in a new thread or on get().

// starts in a new thread
auto fut1 = std::async(std::launch::async, f, 1);

// run in the same thread on wait() or get()
auto fut2 = std::async(std::launch::deferred, f, 2);

// default: implementation chooses
auto fut3 = std::async(std::launch::deferred | std::launch::async, f, 3);

// default: implementation chooses
auto fut4 = std::async(f, 4);

If no wait() or get() is called, then the task may not be executed at all.

Futures and exceptions

double square_root(double x)
{
  if (x < 0)
  {
    throw std::out_of_range("x is negative");
  }
  return sqrt(x);
}

int main()
{
  std::future<double> fut = std::async(square_root, -1);
  double res = fut.get(); // f becomes ready on exception and rethrows
  return 0;
} 

Further future methods

  • fut.valid(): future has a shared state
  • fut.wait(): wait until result is available
  • fut.wait_for(): timeout duration
  • fut.wait_until(): wait until specific time point

Futures' destructors

double long_calculation(int n)
{
  /* ... */
}

int main()
{
  std::async(std::launch::async, long_calculation, 42);  // ~future blocks
  std::async(std::launch::async, long_calculation, 100); // ~future blocks
} 
int main()
{
  std::future<double> fut1 = std::async(std::launch::async, long_calculation, 42);
  // no blocking
  std::future<double> fut2 = std::async(std::launch::async, long_calculation, 100);
  // no blocking
} 

Keep in mind that the futures has a special shared state, which demands that future::~future blocks.

For real asynchronous you need to keep the returned future:

Promises

A promise is a tool for passing the return value (or exception) from a thread executing a function to the thread that consumes the result using future.

void asyncFun(std::promise<int> myPromise)
{
  int result;
  try
  {
    // calculate the result
    myPromise.set_value(result);
  }
  catch (...)
  {
    myPromise.set_exception(std::current_exception());
  }
}

Promises

int main()
{
  std::promise<int> intPromise;
  std::future<int> intFuture = intPromise.getFuture();
  std::thread t(asyncFun, std::move(intPromise));

  // do other stuff here, while asyncFun is working

  int result = intFuture.get();  // may throw exception
  return 0;
}
void asyncFun(std::promise<int> myPromise)
{
  int result;
  try
  {
    // calculate the result
    myPromise.set_value(result);
  }
  catch (...)
  {
    myPromise.set_exception(std::current_exception());
  }
}

Packaged task

double square_root(double x)
{
  if ( x < 0 )
  {
    throw std::out_of_range("x<0");
  }
  return sqrt(x);
}

int main()
{
  double x = 4.0;

  std::packaged_task<double(double)> tsk(square_root);
  std::future<double> fut = tsk.get_future(); // future will be ready when task completes
  
  std::thread t(std::move(tsk), x);  // make sure, task starts immediately
                                     // on different thread
                                     // thread can be joined, detached
  
  double res = fut.get();            // using the future
  return 0;
}

A higher level tool than promises.

Packaged task implementation

template <typename> class my_task;

template <typename R, typename ...Args>
class my_task<R(Args...)>
{
  std::function<R(Args...)> fn;
  std::promise<R> pr;
public:
  template <typename ...Ts>
  explicit my_task(Ts&&... ts) : fn(std::forward<Ts>(ts)...) { }

  template <typename ...Ts>
  void operator()(Ts&&... ts)
  {
      pr.set_value(fn(std::forward<Ts>(ts)...));
  }

  std::future<R> get_future() { return pr.get_future(); }
  // disable copy, default move
};

Packaged task vs async

In the end a std::packaged_task is just a lower level feature for implementing std::async (which is why it can do more than std::async if used together with other lower level stuff, like std::thread).

Simply spoken a std::packaged_task is a std::function linked to a std::future and std::async wraps and calls a std::packaged_task (possibly in a different thread).

Parallel STL (C++17)

C++17 brings us parallel algorithms, so the well known STL algorithms (std::find_if, std::for_each, std::sort, etc.) get a support for parallel (or vectorized) execution.

vector<int> v = { /* ... */ };

// standard sequential sort
std::sort(v.begin(), v.end());

// sequential execution
std::sort(std::parallel::seq, v.begin(), v.end());

// permitting parallel execution
std::sort(std::parallel::par, v.begin(), v.end());

// permitting vectorized execution (only since C++20)
std::sort(std::parallel::unseq, v.begin(), v.end());

// permitting parallel and vectorized execution
std::sort(std::parallel::par_unseq, v.begin(), v.end());

Parallel STL (C++17)

What is vectorized (or unsequenced) execution?

  • Most modern CPUs can execute SIMD (single instruction, multiple data) operations, significantly boosting efficiency.
     
  • A SIMD operation is where the same instruction is executed on multiple data. SIMD is data level parallelism without thread concurrency.
     
  • With parallel and vectorized  execution policies, it is the programmer's responsibility to avoid data races and deadlocks.

Parallel STL (C++17)

Parallel STL is only implemented in modern compilers, so keep in mind where you can use this new feature.

  • GNU GCC: supported since version 9.1 (May 2019)
  • Clang: supported since version 17 (September 2023)
  • MSVC: supported since MSVC 19.14
    (Visual Studio 2017 with at least version 15.7)

Support is not necessarily complete immediately, e.g. MSVC only implements the vectorized execution policy since MSVC 19.28 (VS 2019 16.8+)

Follow current state at:

https://en.cppreference.com/w/cpp/compiler_support

Look for "Parallel algorithms and execution policies".

Multithreading in C#

Everybody who learns concurrency thinks they understand it, ends up finding mysterious races they thought weren't possible, and discovers that they didn't actually understand it yet after all.

Herb Sutter
Chair of the ISO C++ standards committee, Microsoft

Atomicity

Atomic data types: bool, char, byte, sbyte, short, ushort, uint, int, float, and reference types.

Non-atomic data types: long, ulong, double, decimal, etc.

There is no guarantee of atomic read-modify-write, such as in the case of increment or decrement.

class SomeType { /* ... */ }

public static Program {
    public static void Main(string[] args) {

        int x = 41;        
        Interlocked.Increment(ref x);   // increment x

        SomeType y = new SomeType();
        SomeType z = new SomeType();
        // ...
        Interlocked.Exchange(ref y, z); // replace y with z
}

Basic atomicity can be achieved through the methods of the Interlocked class:

Blocking: Mutexes

public Stack<T>
{
    private Mutex mutex;
    private IList<T> values;

    public Stack()
    {
        mutex = new Mutex();
        values = new List<T>();
    }

    public void Push(T item);
    {
        mutex.WaitOne();
        values.Add(item);  // critical section
        mutex.ReleaseMutex();
    }
}

Can also wait until a timeout reached:
mutex.WaitOne(Int32) and mutex.WaitOne(TimeSpan)

Blocking: Semaphore

public Stack<T>
{
    private Semaphore sem;
    private IList<T> values;

    public Stack()
    {
        sem = new Semaphore();
        values = new List<T>();
    }

    public void Push(T item);
    {
        sem.WaitOne();
        values.Add(item);  // critical section
        sem.Release();
    }
}

Can specify the number of initial entries (ownership) and the maximum number of concurrent entries:

Semaphore sem = new Semaphore(0, 3);

Blocking: Monitors

public Stack<T>
{
    private IList<T> values;

    public Stack()
    {
        values = new List<T>();
    }

    public void Push(T item);
    {
        Monitor.Enter(values);
        values.Add(item);  // critical section
        Monitor.Exit(values);
    }
}
public void Push(T item);
{
    lock(values)
    {
        values.Add(item);  // critical section
    }
}

Same as using the lock statement:

Mutexes vs. Semaphores vs. Monitors

Mutex:

  • can be named
  • scope is system-wide
  • good for synchronising between different processes  (applications)

Semaphore:

  • can be named
  • more lightweight
  • maximum scope is application-wide
  • good for synchronising between threads

Monitor:

  • unnamed
  • scope is the same the object it locks on
    • maximum scope is application-wide

Concurrent collections

Thread-safe, mutually exclusive collections are part of the .NET Standard Library, under the System.Collections.Concurrent namespace

  • ConcurrentBag, ConcurrentDictionaryConcurrentQueue, ConcurrentStack, BlockingCollection (producer-consumer)
  • The signature of their operations are a little different, but they also inherit the usual interfaces, e.g.:
IDictionary<String, Object> dictionary = 
    new ConcurrentDictionary<String, Object>();

Threads

class Program {
  public static void DoWork() {
     Console.WriteLine("Child thread starts");
     
     Console.WriteLine("Child thread goes to sleep");
     Thread.Sleep(5000); // the thread is paused for 5000 milliseconds
     Console.WriteLine("Child thread resumes and finishes");
  }
  
  static void Main(string[] args) {
     ThreadStart childJob = new ThreadStart(DoWork);
     Console.WriteLine("Main thread starts");
     
     Thread childThread = new Thread(childJob);
     childThread.Start();

     Console.WriteLine("Main thread waiting");
     childThread.Join();
     Console.WriteLine("Main thread finishes");
  }
}

Threads: passing parameters

class Program {
  public static void DoWork(object obj) {
     Console.WriteLine("Child thread starts");

     if (obj is String)
       Console.WriteLine(obj as String);
     else
       throw new ArgumentException("Parameter is not a string.", nameof(obj));
     
     Console.WriteLine("Child thread goes to sleep");
     Thread.Sleep(5000); // the thread is paused for 5000 milliseconds
     Console.WriteLine("Child thread resumes and finishes");
  }
  
  static void Main(string[] args) {
     ParameterizedThreadStart childJob = new ParameterizedThreadStart(DoWork);
     Console.WriteLine("Main thread starts");
     
     Thread childThread = new Thread(childJob);
     childThread.Start("Message from Main");

     Console.WriteLine("Main thread waiting");
     childThread.Join();
     Console.WriteLine("Main thread finishes");
  }
}

Threads

Problems with plain Thread objects:

  • cannot pass typed parameters
    (shared data members can be used)
  • cannot return result
    (shared data members can be used)
  • no exception forwarding from child thread to main thread

Tasks (since .NET 4.0)

  • Higher abstraction level solution for asynchronous or delayed computation (compared to Thread)
  • Tasks execute an operation given as a lambda-expression (Action, Func).
  • Tasks can be executed by a single method call (Task.Run) or can be instantiated and executed late (Start). The factory design pattern can also be utilized (Task.Factory.StartNew).
  • The result of a Task can be retrieved through the Result property (will wait to be accessible).

Tasks

private Int32 Compute(){ /* ... */ } 
  // calculation which produces a result

private void RunCompute() {
   
  Int32 result = Task.Run(() => Compute()).Result;
      // execute task and wait for the result

  // ...
}
private Int32 Compute(){ /* ... */ } 
  // calculation which produces a result

private void RunCompute() {
  Task<Int32> myTask = new Task<Int32>(() => Compute());
    // create a task with the job given
  myTask.Start(); // start the task

  // ...

  Int32 result = myTask.Result;
    // wait for the result
  
  // ...
}

Tasks

class Program {
  public static int Add(int a, int b) {
     Console.WriteLine("Child thread starts");
     int result = a + b;
     
     Console.WriteLine("Child thread goes to sleep");
     Thread.Sleep(5000); // the thread is paused for 5000 milliseconds
     
     Console.WriteLine("Child thread resumes and finishes");
     return result;
  }
  
  public static void Main(string[] args) {
     int x = 30;
     int y = 12;
     
     Task<int> task = new Task<int>(() => Add(x, y));
     Console.WriteLine("Main thread starts");
     task.Start();

     Console.WriteLine("Main thread waiting");
     int sum = task.Result; // blocks until result is ready
                            // alternative: task.Wait() and its overloads
     Console.WriteLine("Main thread finishes, sum = {0}", sum);
  }
}

Tasks: exception handling

public static void Main(string[] args) {
   Console.WriteLine("Main thread starts");
   Task<int> taskA = DoWorkAsync(42);
   Task<int> taskB = DoWorkAsync(100);

   Console.WriteLine("Main thread waiting");
   try {
     Task.WaitAll(new Task[] { taskA, taskB });
     // taskA.Result and taskB.Result are available at this point
   }
   catch (AggregateException ae) {
     foreach (var e in ae.InnerExceptions) {
       // handle exception ...
     }
   }
   Console.WriteLine("Main thread finishes");
}

Unhandled exceptions thrown by user code that is running inside a task are propagated back to the calling thread.

Multiple exception can be thrown (e.g. when on waiting multiple child tasks), so the Task infrastructure wraps them in an AggregateException instance.

Tasks: async / await

class Program {
  public static int Add(int a, int b) {
     /* ... */
  }
 
  public static async Task<int> AddAsync(int a, int b)
  {
     int result = await Task.Run(() => Add(a, b));
     Console.WriteLine("Result computed = {0}", result);
     return result;
  }
 
  public static void Main(string[] args) {
     int x = 30;
     int y = 12;
 
     Console.WriteLine("Main thread starts");
     Task<int> task = AddAsync(x, y);
 
     Console.WriteLine("Main thread waiting");
     int sum = task.Result;
     Console.WriteLine("Main thread finishes, sum = {0}", sum);
  }
}

Tasks: async / await

Since .NET 4.5 methods of standard library which should be run as a background tasks are available as asynchronous operations.

  • By convention these methods has the Async suffix in their name.
  • E.g. I/O operations can be slow
    (compared to CPU and memory operations):
StreamReader reader = new StreamReader("somefile.txt");
String firstLine = await reader.ReadLineAsync();

Tasks: cancellation

  • Tasks can be gracefully interrupted through a CancellationToken.
  • The token can be fetched from a CancellationTokenSource and the interruption can be achieved by the Cancel method.
  • This does not abort the task, but we can programatically check the IsCancellationRequested property and cancel the task.

Threads can be terminated through the Abort method unconditionally, which is considered an obsolete solution.

Tasks: cancellation

class Program {
 
  public static void Main(string[] args) {
    // ...
    
    CancellationTokenSource source = new CancellationTokenSource(); // token source
    CancellationToken token = source.Token; // token

    Task.Run(() => {
      // ...
      if (token.IsCancellationRequested)
        // if requested
        return; // we cancel the execution
      // ...
    }, token); // pass the cancellation token
    
    // ...
  }
}

Tasks: synchronization

  • Tasks can synchronized using the TaskScheduler type.
  • Tasks can be initialized with a TaskScheduler param.
  • The static FromCurrentSynchronizationContext method provides an easy solution to synchronize into the current thread.
  • Usually we do not want to synchronize the executed operation, just to access the UI elements.
    • We can execute an outer, asynchronous task.
    • Inside it we can run a synchronized task.
    • After the outer task finished, we can chain further operations with the ContinueWith method.

Tasks: synchronization

class Program {
 
  public static void Main(string[] args) {
    // ...
    
    TaskScheduler scheduler = TaskScheduler.FromCurrentSynchronizationContext();
      // scheduler for synchronization

    Task.Factory.StartNew(() => { ... }, ..., ..., scheduler)
      // the task will be executed synchronously

    Task.Factory.StartNew(() => { ... })
     .ContinueWith(() => { label.Text = "Ready." }, scheduler);
      // the task is executed asynchronously,
      // then executes a synchronous operation
      // to provide a thread-safe way to access the UI
    
    // ...
  }
}
Made with Slides.com