Every Move You Make

Exploring Pratical Issues in Smartphone Motion Sensor Fingerprinting and Countermeasures

Presenter: Wenqing Fan

Authors: Anupam Das, Nikita Borisov, Edward Chou

Intro

User tracking

Browser Fingerprinting (without cookies)

Mobile browsers give web pages access to internal motion sensors

 

Smartphones Fingerprinting

Questions

Data Collection

Samples and data streams

  • 300 participants
  • 45 brands
  • accelerometer and gyroscope

 

  • \(\vec{a_g}=(a_{gx},a_{gy},a_{gz})\)   acceleration including gravity
  • \(\vec{a}=(a_x,a_y,a_z)\)          acceleration without gravity
  • \(\vec{\omega}=(\omega_x,\omega_y,\omega_z)\)        rotational rate
  • \(\psi_g,\psi\)                            azimuth with(out) gravity
  • \(\theta_g,\theta\)                              inclination with(out) gravity

 

  • ...400 features

Features

Features

Classifier and metrics

  • Python scikit-learn lib

 

  • Accuracy = Samples correctly classified / Total test samples

Fingerprinting

in Practise

  • Sensor characteristic affected by phone position

 

  • Require phone to be repositioned between 2 sessions

 

  • Previous work overestimated accuracy

Overfitting

More data streams

4

400

Combining classifiers - Library

  • Hard (weighted) voting classifiers
  • Soft (weighted) voting classifiers

 

  • Weight: Accuracy

Combining classifiers - New approach

  • Eliminate redundant classifiers, e.g. GNB
  • Find a consensus set by top prediction
  • Pick a class from the consensus set based on Borda count

*Borda count: # of classes ranked below

Combining auxiliary info

  • e.g. User-Agent ?

 

  • \(log_2k\) bits of entropy

 ➡️ distinguish k devices

 

  • New approach (Voting) outperforms RF and ExTree classifiers

Defenses

Countermeasures

Quantization

Obfuscation

Obfuscation

  • add noise with affine transformation
s^O=s^M\cdot g^O + o^O
  • \(s^M\)  original signal
  • \(g^O\)   random obfuscation param: gain
  • \(o^O\)   random obfuscation param: offset

Obfuscation - Problem

  • Visit 2 websites without re-randomization
    • Link 2 visits' fingerprints

 

  • Visit 2 websites with re-randomization
    • Link 2 visits in other ways
    • Signal processing to reduce the noise

Quantization

  • Convert accelerometer data into polar vector \(<r,\theta,\psi>\)
function quantization(val, bin_size) {
    // val: raw value
    // bin_size: quantization size
    return round(val / bin_size) * bin_size;
}
  • bin_size
    • \(\theta,\psi\):   \(6\degree\)
    • \(r\):        \(1\ ms^{-2}\)
  • \(<r,\theta,\psi> \Rightarrow <\hat{r},\hat{\theta},\hat{\psi}> \Rightarrow\) Cartesian coordinate system

Quantization - Bin size

Effectiveness

Usability

Usage Scenarios

Detect orientation change to adjust page layout

Sensor-sensitive apps

Tilt-based video games that read sensor data

Survey

  • 5 Levels
  • 3 mitigations applied: baseline, obfuscation, quantization
  • Objective metrics: time spent, restarts
  • Subjective ratings

Survey results

  • Level difficulty greatly impacts both objective and subjective metrics...
  • But mitigations does not

Survey results - problem

  • Training effect

 

  • Game with longer duration
  • Single user's performance

Extra topics

  • Accelerometer: No need for permission request
    • ​Webview / PWA ?

 

  • Accelerometer ➡️ Leak speech patterns without microphone
    • ​Loud audio impacts accelerometer

 

  • Use sensors to detect running environment
    • Sandboxes usually don't have valid sensor readings
    • Only runs in real devices

Conclusions

Conclusions

  • Mobile sensor fingerprinting
    • Need extra info to work well
    • Combined classifiers => Better accuracy
    • Realistic threat

 

  • Mitigations
    • Unlikely to affect most apps
    • No significant impact on sensor-sensitive apps
Made with Slides.com