Milo Viviani (joint work with Francesco Grotto and Marco Romito)
Scuola Normale Superiore - Pisa
YoungStats Webinar - Stochastic fluid dynamics
15 November 2023
Vorticity formulation
for \(i=1,2,\dots,N\)
Empirical measure
Deterministic [Godota&Sakajo, 2016]
for \(i=1,2,\dots,N\)
where, for any \(\varepsilon>0\), \(K_\varepsilon = \varrho^\varepsilon\ast K\), \(K(x) = \frac{x^\perp}{|x|^2}\),
for \(\varrho:\mathbb{R}\rightarrow\mathbb{R}\) convolution kernel \(\varrho^\varepsilon(x) = \frac{1}{\varepsilon^2}\varrho(\frac{x}{\varepsilon})\)
Given \(x_1(0), x_2(0), x_3(0)\) collapsing intial configuration, for \(\varepsilon\rightarrow 0\)
where \(\overline{x}_i=(x_{i,1},-x_{i,2})\)
Stochastic [Flandoli&Gubinelli&Priola, 2011]
for \(i=1,2,\dots,N\)
where, for any \(\varepsilon>0\), \(B^i\) are i.i.d. 2D Brownian motions. Implies pathwise unique strong solution for \(t\geq 0\).
Given \(x_1(0)^\varepsilon, x_2(0)^\varepsilon, x_3(0)^\varepsilon\) collapsing intial configuration, for \(\varepsilon\rightarrow 0\)
OPEN QUESTION: What is the limit \(Law(x_1,x_2,x_3)\)?
The Point-vortex equations in \(\mathbb{R}^2\) admit the following first integrals
For N=3, the point-vortex equations exhibit (self similar) collapse in finite time if and only if
Trajectories \(x^\varepsilon_1,x^\varepsilon_2,x^\varepsilon_3\)
Evolution of \(Z(t)\) purple, green \(I=I_0\), black \(H=H_0\)
\(\varepsilon = 10^{-10}\)
Rmk: \(H\) and \(I\) are local martingales
where the time-step \(h:=h(n)\) is such that \(h(n)\sigma(x^n_1,x^n_2,x^n_3)^\alpha=h(0)\sigma(x^0_1,x^0_2,x^0_3)^\alpha\), for \(\alpha=1.3\) and \( \sigma(x_1,x_2,x_3)=\frac{1}{\frac{1}{\|x_1-x_2\|^2}+\frac{1}{\|x_2-x_3\|^2}+\frac{1}{\|x_1-x_3\|^2}}\)
Empirical c.d.f. (solid blue) of the angle of \(x_2^\varepsilon(2t_c)\) for \(10^4\) samples, \(\varepsilon=10^{-10}\) . Dotted blue curves are confidence bounds (\(95\%\)) for the e.c.d.f. and the solid red line is the c.d.f. of the uniform distribution on \([0,2\pi]\).
Empirical c.d.f. (solid blue) of the angle of \(x_2^\varepsilon(2t_c)\) for \(10^4\) samples, \(\varepsilon=10^{-10}\) . Dotted blue curves are confidence bounds (\(95\%\)) for the e.c.d.f. and the solid red line is the c.d.f. of the uniform distribution on \([0,2\pi]\). Samples being divided (right and left plots) according to the similarity class of the PV position triangle during burst.