Variational Quantum Linear Solver for Multiphysics Problems (Final)

Mostafa Atallah

Cairo University

\frac{\partial^2 T}{\partial x^2} = 0

The Laplace Equation

T_{i+1} - 2T_{i}+ T_{i-1} = 0

apply FDM

\begin{pmatrix} -2 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & -2 & 0 & 1 & 0 & 0 & 0 & 0\\ 1 & 0 & -2 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & -2 & 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1 & -2 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & -2 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 & -2 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} T_{0} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ T_{7} \end{pmatrix} =\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}
A x = b
A = 2 \left( I -0.125\; X_0 X_1 X_2 + 0.125 \; X_0 Y_1 Y_2 + 0.125 \; Y_0 X_1 Y_2 - 0.125 \; Y_0 Y_1 X_2 - 0.25 \; X_1 X_2 - 0.25 \; Y_1 Y_2 - 0.5 \; X_2 \right)

VQLS

R_y(\alpha_i) = \mathbf{e}^{-\imath \; \alpha_i Y / 2}
V(\alpha)

\[ H = A^\dagger (\mathbb{I} - |b> <b|) A \]

\[ C = <x|H|x>\]

Cost Convergence

Cost vs. Shots

Goals Checklist

  • Study and analyze the performance of the Variational Quantum Linear Solver (VQLS) in general.
  • Solve some Multiphysics problems such as the Heat equation, etc. using VQLS.
  • Execute the results using Qiskit on both a simulator and a device.
  • Work with higher dimensions and employ Qiskit runtime and the local cost approach.
  • Study quantum chip qubits connectivity and use the error mitigation techniques which can significantly improve expectation values and therefore the final fidelity.
Made with Slides.com