Parameterized Approaches
Neeldhara Misra
to
KEMENY RANK AGGREGATION
IISc MSR Seminar Series
18 FEB 2022
(CSE @IIT Gandhinagar)
Plan
Input.
A collection of rankings
over a set of alternatives.
Input.
A collection of rankings
over a set of alternatives.
Input.
A collection of partial orders
over a set of alternatives.
Input.
A collection of weak orders
over a set of alternatives.
Input.
A collection of rankings
over a set of alternatives.
Input.
A collection of rankings
over a set of alternatives.
Output.
A single consensus ranking.
Input.
A collection of rankings
over a set of alternatives.
Output.
A single consensus ranking.
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
Input.
A collection of rankings
over a set of alternatives.
Output.
A single consensus ranking.
Input.
A collection of rankings
over a set of alternatives.
Output.
A singleย ranking that satisfies unanimity, yada yada.
Input.
A collection of rankings
over a set of alternatives.
Output.
A singleย ranking that satisfies unanimity, yada yada.
Input.
A collection of rankings
over a set of alternatives.
Output.
A singleย ranking that minimises
dissatisfication.
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
A notion of distance
between permutations would be
a useful measure of dissatisfaction.
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | |||||
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | ||||
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | |||
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ||
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โ๏ธ | ||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | |||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | ๐คทโโ๏ธ | ||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | ๐คทโโ๏ธ | ||
๐ | ๐ก | ||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | ๐คทโโ๏ธ | ||
๐ | ๐ก | ๐ฅบ | |||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | ๐คทโโ๏ธ | ||
๐ | ๐ก | ๐ฅบ | |||
๐ฉ | ๐ญ | ||||
๐ฎ |
distance = #of disagreements
Input.
A collection of rankings
over a set of alternatives.
Output.
A singleย ranking that minimises
the total Kendall tau or bubble sort distance.
Bartholdi, Tovey and Tick, Social Choice and Welfare 1989,
Dwork, Kumar, Naor, and Sivakumar, WWW 2001
The problem of computing
a Kemeny optimal permutation
for a given collection of \(k\) full lists, for even integers \(k \geq 4\),
is NP-hard.
Minimum Feedback Edge Set
Minimum Feedback Edge Set
on Directed Graphs
Minimum Feedback Edge Set
on Directed Graphs
Minimum Feedback Edge Set
on Directed Graphs
Minimum Feedback Edge Set
on Directed Graphs
Minimum Feedback Edge Set
on Directed Graphs
Minimum Feedback Edge Set
on Directed Graphs
Minimum Feedback Edge Set
on Directed Graphs
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
5
g
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
5
g
6
e
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
5
g
6
e
7
h
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
5
g
6
e
7
h
8
i
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
a
b
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
2
c
1
a
b
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
3
e
2
c
1
a
b
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
d
4
3
e
2
c
1
a
b
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
f
5
i
d
4
3
e
2
c
1
a
b
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
g
6
f
5
i
d
4
3
e
2
c
1
a
b
h
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
g
6
f
5
i
d
4
3
e
2
c
1
a
b
h
7
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
g
6
f
5
i
d
4
3
e
2
c
1
a
b
h
7
8
Minimum Feedback Edge Set
on Directed Graphs
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
g
f
i
d
e
c
h
a
b
d
c
f
g
e
h
i
a
b
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7