Parameterized Approaches

Neeldhara Misra

to

KEMENY RANK AGGREGATION

IISc MSR Seminar Series

18 FEB 2022

(CSE @IIT Gandhinagar)

Plan

Input.

A collection of rankings

over a set of alternatives.

Input.

A collection of rankings

over a set of alternatives.

Input.

A collection of partial orders

over a set of alternatives.

Input.

A collection of weak orders

over a set of alternatives.

Input.

A collection of rankings

over a set of alternatives.

Input.

A collection of rankings

over a set of alternatives.

Output.

A single consensus ranking.

Input.

A collection of rankings

over a set of alternatives.

Output.

A single consensus ranking.

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

Input.

A collection of rankings

over a set of alternatives.

Output.

A single consensus ranking.

Input.

A collection of rankings

over a set of alternatives.

Output.

A singleย ranking that satisfies unanimity, yada yada.

Input.

A collection of rankings

over a set of alternatives.

Output.

A singleย ranking that satisfies unanimity, yada yada.

Input.

A collection of rankings

over a set of alternatives.

Output.

A singleย ranking that minimises

dissatisfication.

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

A notion of distance

between permutations would be

a useful measure of dissatisfaction.

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โœ”๏ธ
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ ๐Ÿคทโ€โ™€๏ธ
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ ๐Ÿคทโ€โ™€๏ธ
๐Ÿ” ๐Ÿ˜ก
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ ๐Ÿคทโ€โ™€๏ธ
๐Ÿ” ๐Ÿ˜ก ๐Ÿฅบ
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ ๐Ÿคทโ€โ™€๏ธ
๐Ÿ” ๐Ÿ˜ก ๐Ÿฅบ
๐Ÿฉ ๐Ÿ˜ญ
๐ŸŒฎ

distance = #of disagreements

Input.

A collection of rankings

over a set of alternatives.

Output.

A singleย ranking that minimises

the total Kendall tau or bubble sort distance.

Bartholdi, Tovey and Tick, Social Choice and Welfare 1989,

Dwork, Kumar, Naor, and Sivakumar, WWW 2001

The problem of computing
a Kemeny optimal permutation
for a given collection of \(k\) full lists, for even integers \(k \geq 4\),
is NP-hard.

Minimum Feedback Edge Set

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

5

g

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

5

g

6

e

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

5

g

6

e

7

h

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

5

g

6

e

7

h

8

i

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

2

c

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

3

e

2

c

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

d

4

3

e

2

c

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

f

5

i

d

4

3

e

2

c

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

g

6

f

5

i

d

4

3

e

2

c

1

a

b

h

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

g

6

f

5

i

d

4

3

e

2

c

1

a

b

h

7

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

g

6

f

5

i

d

4

3

e

2

c

1

a

b

h

7

8

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

g

f

i

d

e

c

h

a

b

d

c

f

g

e

h

i

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7