- C F Gauss
y∝x1
var(Xˉ) falls inversely with n?
var(Xˉ) is independent of μ?
y∝x2
var(Xˉ) is independent of μ?
var(X) scales as σ2?
var(Xˉ) is independent of μ?
var(X) scales as σ2?
N(0,1/3)
Uniform(−1,1)
μ=0,σ=1/3
PDF(X)
PDF(X)
x | -3 | -0.5 | 0 | 0.5 | 3 |
z |
x | -3 | -0.5 | 0 | 0.5 | 3 |
z | -3 | -0.5 | 0 | 0.5 | 3 |
x | -3 | -0.5 | 0 | 0.5 | 3 |
z |
x | -3 | -0.5 | 0 | 0.5 | 3 |
z | -2 | -0.75 | -0.5 | -0.25 | 1 |
x | -3 | -0.5 | 0 | 0.5 | 3 |
z | -2 | -0.75 | -0.5 | -0.25 | 1 |
x | -3 | -0.5 | 0 | 0.5 | 3 |
z | -3 | -0.5 | 0 | 0.5 | 3 |
x | -2 | -0.5 | 0 | 0.5 | 2 |
z |
x | -2 | -0.5 | 0 | 0.5 | 2 |
z | -3.46 | -0.87 | 0 | 0.87 | 3.46 |
k=10
0.058
0.054
k=15
0.109
0.111
k=18
0.061
0.065
X1
X2
X3
X4
X1+X2
X1+X2+X3
X1+X2+X3+X4
X1
X2
X3
X4
X1+X2
X1+X2+X3
X1+X2+X3+X4
Ω
F
0
1
P
∣Ω∣1
0
1
P
∣Ω∣1
X
10 km
40 km
5 km
Pr(Smileage2)
X=S2
⚅⚃⚀
⚅⚃⚅
X=311
⚀⚂⚂
X=37
S2=98
S2=938
X=316
S2=98
E[S2] =E[n∑i=1n(Xi−X)2]
E[n∑i=1n(Xi−μ)2]= σ2
E[n∑i=1n(Xi−μ)2]= σ2
1
2
3
4
5
6
⚀
⚂
⚃
E[S2] =E[n∑i=1n(Xi−X)2]
E[n∑i=1n(Xi−μ)2]= σ2
1
2
3
4
5
6
⚀
⚂
⚅
E[S2] =E[n∑i=1n(Xi−X)2]
E[n∑i=1n(Xi−μ)2]= σ2
1
2
3
4
5
6
⚀
⚀
⚁
E[S2] =E[n∑i=1n(Xi−X)2]
E[n∑i=1n(Xi−μ)2]= σ2
1
2
3
4
5
6
⚀
⚀
⚁
1
2
3
4
5
6
⚀
⚂
⚅
1
2
3
4
5
6
⚀
⚂
⚃
E[S2] =E[n∑i=1n(Xi−X)2]
E[n∑i=1n(Xi−μ)2]= σ2
∑i=1n(Xi−μ)2
=∑i=1n((Xi−X)+(X−μ))2
=∑i=1n((Xi−X)2+(X−μ)2+2(Xi−X)(X−μ))
0
=∑i=1n(Xi−X)2+∑i=1n(X−μ)2
E[S2] =E[n∑i=1n(Xi−X)2]
E[σ2−S2]
=E[n1∑i=1n(Xi−μ)2−n1∑i=1n(Xi−X)2]
=E[n1∑i=1n((Xi2−2Xiμ+μ2)−(Xi2−2XiX+X2))]
=E[n1∑i=1n(μ2−X2+2Xi(X−μ)]
=E[μ2−X2+n1∑i=1n2Xi(X−μ)]
=E[μ2−X2+2X(X−μ)]
=E[μ2+X2−2Xμ]
=E[(X−μ)2]
=Var(X)
=nσ2
E[σ2−S2]
=nσ2
=nσ2
E[S2]=nn−1σ2
E[S2]=nn−1σ2
E[Sn−12]= σ2
E[Sn2]= nn−1σ2
E[Sn−12]= σ2
E[Sn2]= nn−1σ2
Sn2 =n∑i=1n(Xi−X)2
Sn−12 =n−1∑i=1n(Xi−X)2
Sn2 =n∑i=1n(Xi−X)2
Sn−12 =n−1∑i=1n(Xi−X)2
Sn2 =n∑i=1n(Xi−X)2
Sn−12 =n−1∑i=1n(Xi−X)2
0
Q
Q
Q
Q
Q=Z12
Q=Z12+Z22
Q=Z12+Z22+Z32
Q=Z12+Z22+Z32+Z42
Q=Z12+Z22+Z32+Z42+Z52
Q∼χ2(1)
Q∼χ2(2)
Q∼χ2(3)
Q∼χ2(4)
Q∼χ2(5)
Q=Z12+Z22+Z32+Z42
Q∼χ2(4)
Q=Z12
Q∼χ2(1)
Q=Z12+Z22
Q∼χ2(2)
Q=Z12+Z22
Q∼χ2(2)
Q=Z12
Q∼χ2(1)
σ2(Z2)=E[Z4]−(E[Z2])2
=3−1=2
∼χ2(n)
∼χ2(1)
∼χ2(n)
∼χ2(1)
∼χ2(n−1)
var(aX)=a2var(X)
n=2
n=3
n=4
n=5
n=7
n=8
True
False
True
False
True
False
True
False
True
False