Magnetism

Charged Particles

  • influence is described in terms of 

The influence

and interactions

of

Story so far was about

Electric

Fields

3-D Electric Field Caused by two identical Point Charges

  • interaction is described in terms of 

Electric

Forces

Charged Particles

The influence

and interactions

of

Today's story...

moving

3-D Electric Field Caused by two identical Point Charges

Biot-Savart Law

\vec{B}=\frac{\mu_0}{4\pi}\frac{q\ \vec{v}\ \times \ \hat{r}}{r^2}

Direction is given by

Right-Hand-Rule

Magnitude is given by

{B}=\frac{\mu_0}{4\pi}\frac{q\ v\ \text{sin}\theta }{r^2}
\mu_0=4\pi\times 10^{-7} T\ m/A
[B]=\text{T for Tesla}

Biot-Savart Law

\vec{B}=\frac{\mu_0}{4\pi}\frac{q\ \vec{v}\ \times \ \hat{r}}{r^2}

Direction is given by

Right-Hand-Rule

Magnitude is given by

{B}=\frac{\mu_0}{4\pi}\frac{q\ v\ \text{sin}\theta }{r^2}
\mu_0=4\pi\times 10^{-7} T\ m/A
[B]=\text{T for Tesla}

Biot-Savart Law

\vec{B}=\frac{\mu_0}{4\pi}\frac{q\ \vec{v}\ \times \ \hat{r}}{r^2}

•Sources are moving charges

–If velocity is zero, magnetic field is zero!

•Superposition principle applies

–Just like electric fields, magnetic field vectors add linearly!

•Biot-Savart Law

–Magnetic field strength has inverse square dependence on the distance from the moving charge

   Important Highlights

Biot-Savart Law

\vec{B}=\frac{\mu_0}{4\pi}\frac{q\ \vec{v}\ \times \ \hat{r}}{r^2}

      Example

Biot-Savart Law

d\vec{B}=\frac{\mu_0}{4\pi}\frac{I\ d\vec{l}\ \times \ \hat{r}}{r^2}

 Magnetic Field due to a Current Segment

d\vec{B}=\frac{\mu_0}{4\pi}\frac{I\ d\vec{l}\ \times \ \hat{r}}{r^2}
\vec{B}=\frac{\mu_0}{4\pi}\frac{q\ \vec{v}\ \times \ \hat{r}}{r^2}
q \vec{v} = q \frac{d\vec{l}}{dt} = I\ d\vec{l}

Biot-Savart Law

d\vec{B}=\frac{\mu_0}{4\pi}\frac{I\ d\vec{l}\ \times \ \hat{r}}{r^2}

 Magnetic Field due to a Current Segment

Made with Slides.com