Simple Harmonic Motion

Motion

Rotational Motion

results from correlated simultaneous oscillations.

x(t)\ =\ X\ \text{cos}(\omega\ t\ + \phi_x)
y(t)\ =\ Y\ \text{cos}(\omega\ t\ + \phi_y)

for

X=Y=A

and

\phi_y=\phi_x-\tfrac{\pi}{2}
x(t)\ =\ A\ \text{cos}(\omega\ t)
y(t)\ =\ A\ \text{sin}(\omega\ t)
\}
x^2+y^2=A^2

RECALL

 Position

\vec{r}

 relative (to a reference frame)

 Velocity

"the instantaneous state of motion" quantifies the rate of change of position

\vec{v}
\vec{v}=\frac{d\vec{r}}{dt}

 Acceleration

quantifies changes in the state of motion

\vec{a}
\vec{a}=\frac{d\vec{v}}{dt}=\frac{d^2\vec{r}}{dt^2}
\vec{a}\parallel \vec{v}\iff

change in magnitude of 

\vec{v}

change in direction of 

\vec{a}\perp\vec{v}\iff
\vec{v}

Description of motion (kinematics)

RECALL

 Position

\vec{r}

 relative (to a reference frame)

 Velocity

"the instantaneous state of motion" quantifies the rate of change of position

\vec{v}
\vec{v}=\frac{d\vec{r}}{dt}

 Acceleration

quantifies changes in the state of motion

\vec{a}
\vec{a}=\frac{d\vec{v}}{dt}=\frac{d^2\vec{r}}{dt^2}
\vec{a}\parallel \vec{v}\iff

change in magnitude of 

\vec{v}

change in direction of 

\vec{a}\perp\vec{v}\iff
\vec{v}

Causes of motion (Dynamics)

Force acceleration
\vec{a}=\frac{\Sigma \vec{F}}{m}

Recall that change in the state of motion is 

\vec{a}=\frac{\Sigma \vec{F}}{m}

Recall that to describe motion is to describe the position at every instance in time.

Made with Slides.com