KAKURO - A CONSTRAINT SATISFACTION PROBLEM

Özlem Salehi, Adam Glos

                           Coding Competition

GENERAL SOLUTION

Mark states that correspond to correct assignments

Each binary variable can be represented by a qubit

OUR SOLUTION

Also used in our new paper FUNC-QAOA

Inspiration

GM-QAOA

OUR SOLUTION

Some constraints are already handled when preparing the initial state

Custom initial state

OUR SOLUTION

x_0 \neq x_1\\ x_2+2 \neq x_3\\ x_3 \neq x_4 \\ x_1 \neq x_3\\ x_3 \neq x_5\\ x_5 \neq x_6\\ x_0 \neq x_2\\ x_1 \neq x_5\\ x_4 \neq x_6\\ x_3 = 2\\ x_2+x_4+x_3 = 3
x_0 \neq x_2\\ x_0 \neq x_1\\ x_1 \neq x_5\\ x_5 \neq x_6\\ x_4 \neq x_6\\
x_2+2 \neq x_3\\ x_3 \neq x_4 \\ x_1 \neq x_3\\ x_3 \neq x_5\\ x_3 = 2\\ x_2+x_4+x_3 = 3
= \left(\frac{1}{\sqrt 2}(|101010\rangle + |010101\rangle \right) \otimes \frac{1}{2}\left(|00\rangle + |01\rangle + |10\rangle + |11\rangle \right)
|x_2,x_0,x_1,x_5,x_6,x_4\rangle \otimes |x_3\rangle \\

Initial State

Oracle

  • Each constraint is checked and information is stored

​                 1:  Constraint is satisfied
                 0: Constraint is not satisfied

  • MCZ gate is applied on all qubits that hold information about whether the constraint is satisfied
  • More costly initial state and diffusion operator

DISADVANTAGES

  • Smaller number of Grover iterations
  • Simpler oracle resulting in reduced CNOT count

ADVANTAGES

  • MCZ is implemented with RCCX gates
  • Some constraints are implemented in place 

ADDITIONAL SAVINGS

RESULT

86 CNOT gates

Problem

  • Two cells on the same row/column cannot have the same number.

 

  • The sum of the cells on each row/column should equal the matching filled cell.
x_0 \neq x_1\\ x_2+2 \neq x_3\\ x_3 \neq x_4 \\ x_1 \neq x_3\\ x_3 \neq x_5\\ x_5 \neq x_6\\ x_0 \neq x_2\\ x_1 \neq x_5\\ x_4 \neq x_6\\ x_3 = 2\\ x_2+x_4+x_3 = 3
x_i\in \{0,1\}, x_{3} \in \{0,1,2,3\}
Made with Slides.com