Asymptotic behavior of Diffusion means

Pernille E.H. Hansen

University of Copenhagen

Joint work with Stefan Sommer, Benjamin Eltzner and Stephan Huckemann

Content of talk

  • Fréchet mean
  • Diffusion means and estimator
  • Strong consistency
  • Smeary central limit theorem
  • Example of smearieness on hyper spheres  

Fréchet mean

X:\Omega \to M
M = \arg\min_{y\in\mathcal{M}} \mathbb{E}[\text{dist}(y,X)^2]

The Riemann center of mass of a random variable                      is

If                    then      is the Fréchet mean of

M = \{\mu \}
\mu
X.

For                           , the sample Fréchet function

X_1,...,X_N\overset{\text{iid}}{\sim} X
F_N(y) = \frac{1}{N}\sum_{i=1}^{N} \text{dist}(y,X_i)^2
M_N = \arg\min_{y\in M}F_N(y)

and sample Fréchet means

Estimation

Conditions for uniqueness, stong consistency and CLT

Diffusion means

Heat kernel on manifolds

Limitations

Let \(M\) be a smooth manifold. 

A map \(p:M\times M\times (0, \infty)\to(0,\infty)\) is a heat kernel on \(M\) if

$$1. \enspace p \in \mathcal{C}^\infty(M\times M\times (0,\infty))$$

$$2. \enspace (\partial_t-\Delta_x)p(x,y,t) = 0 $$

$$3. \enspace \lim_{t\to 0} p(x,y,t)= \delta_x(y) $$

1) Existence

  • Stochastic completeness
  • \(M\) compact

2) Closed form 

  • Euclidean spaces
  • The hyper spheres
  • Hyperbolic spaces

Brownian motion on manifolds

A Brownian motion on       is a Markov process          with transition density function 

p(x,y,t) \approx
\text{"probability" of hitting }y
\text{ in time }t\text{ when starting in }x
p(x,y,t)
(B_t)
M
x
B_t = y
X_1,...,X_n \overset{\text{iid}}{\sim}X\in M

Given

\mu = \arg\max \frac{1}{n} \sum_{i=1}^n \ln(p(x,X_i,t))

most likely origin points of 

(B_t)
\mu = \arg\min \mathbb{E}_X[-\ln p(x,X,t)]

mean point of

X

Diffusion means

For \(t>0\), the diffusion \(t\)-means \(E_t(X)\) of a random variable \(X: \Omega \to M\) are the minimizers of the log-likelihood function,

$$ L_t(y) = \mathbb{E}[-\ln(p(y,X,t)]$$

Thus,

$$ E_t(X) = \arg\min_{y\in M} \mathbb{E}[-\ln(p(y,X,t)]$$

$$ \lim_{t\to 0}-2t \ln(p(x,y,t)) = \text{dist}(x,y)^2$$

Generalized Fréchet mean*

For a continuous function \( \rho: M\times M \to [0,\infty)\)

the Fréchet \(\rho\)-means of \( X:\Omega\to M\) is the set 

E^{\rho}(X) = \arg\min_{y\in M}\mathbb{E}[\rho(y,X)^2]

with estimator 

E_n^{\rho}(\omega) = \arg\min_{y\in M} \frac{1}{N} \sum_{i=1}^N \rho(y,X_i(\omega))^2

Diffusion \(t\)-means: Choosing \(\rho_t(x,y) = \sqrt{- \ln(p(x,y,t)\beta_t^{-1})} \) with \( \beta_t > p(x,y,t) \) for all \(x,y\in M \). This exist for all \(t>0 \) when \(M\) has bounded sectional curvature*!

*[Cheng et al., 1981]

*[Huckemann, 2011]

Estimation

L_{t,n}(x) = -\frac{1}{N}\sum_{i=1}^N\ln p(x,X_i,t)
E_{t,n}(\omega) = \arg\min_{y\in M} L_{t,n}(y)

with sample likelihood means

Fix \(t>0\). For \(X_1,...,X_n \overset{\text{idd}}{\sim} X\) the sample likelihood function is

We say that \(E_{t,n}(\omega) \) is the diffusion estimator.

Diffusion means in \(\mathbb{R}^m\)?

The heat kernel on \(\mathbb{R}^n\) for each \(t>0\) is

p(x,y,t) =\frac{1}{(4\pi t)^{m/2}} e^{\frac{-\text{dist}_{\mathbb{R}^m}(x,y)^2}{4t}}
E_t(X)=\arg\min_{y\in \mathbb{R}^m} \int_{\mathbb{R}^m} \frac{2}{m}\ln(4\pi t) - \left(\frac{\text{dist}_{\mathbb{R}^m}(x,y)^2}{4t}\right)d\mathbb{P}_X(x)
= \arg\min_{y\in \mathbb{R}^m} \int_{\R^m} \text{dist}_{\mathbb{R}^m}^2 d\mathbb{P}_X(x) = \mathbb{E}[X]

For \( X:\Omega \to \mathbb{R}^m \), we have

The hyper spheres

p(x,y,t) = \sum_{l=0}^\infty e^{-l(l+m-1)\sqrt{2t}}\frac{2l+m-1}{m-1} \frac{1}{A_{\mathcal{S}}^{m}} C_l^{(m-1)/2}(\langle x,y\rangle_ {\R^m} )

The heat kernel on the sphere \(\mathcal{S}^{m}\) for \(m\geq 2\) is

Consider \(X: \Omega \to \mathcal{S}^m \): 

For each \(m\geq 2\), \(t>0\) and \(\alpha\in [0,1/2]\), what are the diffusion \(t\)-means?

\mu
-\mu
P(X = -\mu) = \alpha
P(X = \mu) = 1-\alpha

Example:

\mu
-\mu
P(X = \mu) = 1-\alpha
P(X = -\mu) = \alpha

For each \(m\geq 2\) and \(t>\Lambda_{t,m}\) where

 

there exist \(\alpha_m(t)\)  such that:

 

Riemann Center of mass

  • \(\alpha = 0\): Unique Fréchet mean
  • \( \alpha>0\): Infinite

Diffusion \(t\)-means

  • \( \alpha \leq \alpha_m(t) \): Unique diffusion                     \(t\)-mean 
  • \( \alpha > \alpha_m(t)\) : Infinitely many

Furthermore, \(\alpha_{m}(t) \to 1/2\) as \(t\to \infty\)

\Lambda_{t,m} = \frac12 \left(\log\left( \frac{8(m+3)}{(m+1)} \right) \frac12 \right)^2 \leq 0.838

Strong consistency

  • (ZC)  of Ziezold if for almost all \(\omega \in \Omega\)
\cap_{n=1}^\infty \overline{\cup_{k=n}^\infty M_{t,k}(\omega)} \subset M_t
  • (BPC) Bhattacharya and Patrangenaru if \( \forall \epsilon>0 \) and almost all \(\omega\in \Omega,\exist n\in \mathbb{N}:\)
\cup_{k=n}^\infty M_{t,k}(\omega) \subset B(M_t,\epsilon)
\mu
\mu_n
\mu_{n-1}

Fix \(t>0\). We say that \(M_{t,n}(\omega)\) is a strongly consistent estimator of \(M_t\)  in the sense of

Strong consistency

\mu
\mu_n
\mu_{n-1}

 \(M\) stoc. complete Riemannian manifold of bounded curvature

Fix \(t>0\), \(X: \Omega \to M \)

\(M\) compact Riemannian manifold:

 \( E_{t,n} \) satisfies (ZC) and (BPC)

1. \( E_{t,n} \) satisfies (ZC) if either

  • \(X\) has compact support
  • \(\mathbb{E}[-\ln p (x,X,t)]<\infty\) for all \(x\in M\) & a continuity property in the second
    argument uniform over the first argument

2.  \( E_{t,n} \) satisfies (BPC) if \(E_t \neq \emptyset\) and

  • \( E_{t,n} \) satisfies (ZC)
  • Heine-Borel property of \( \overline{\cup_{n=1}^\infty E_{t,n}}\)
  • A coercivity condition

*[Huckemann, 2011]

Central Limit Theorem

and Smeariness

 

Central limit theorem & smeariness

(Y_n)
M

smeary

k-
n^{\frac{1}{2(k+1)}}X_n \overset{\mathcal{D}}{\to} \mathscr{L}

on Riemannian manifold

Define

X_n = \phi(Y_n)-\phi(\mu)\in \R^m

Does it there exist            st                   is                     ?

(\mu_{t,n})
k\geq 0
(Y_n)
k-

smeary

\phi
\phi:U \to \mathbb{R}^m

Let                       be a chart with

\mu \in U
\Leftrightarrow
X_n
\Leftrightarrow

smeary

k-

*[Eltzner & Huckemann, 2018]

Central limit theorem

Fix

t>0, \enspace M

Riemannian         manifold,

X: \Omega \to M.
m-
  • (Uniqueness):
  • (LLN):  Convergence 
  • (Taylor Expansion): There exist
E_t = \{\mu_t\}
\mu_{t,n}\overset{\mathbb{P}}{\to}\mu_t
L_t(\exp_{\mu_t}(x)) = L_t(\exp_{\mu_t}(0)) + \sum_{i=1}^m T_i |(Rx)_i|^r + o(||x||^r)
\geq 2, R\in\text{SO}(m), T_1,...,T_m\neq 0 \text{ st.}

Assume:

(\mu_{t,n})

is

k-

smeary

with

k = \quad-2
r
r
\mu
-\mu
P(X = \mu) = 1-\alpha
P(X = -\mu) = \alpha

For each \(m\geq 2\) and \(t>\Lambda_t\) where

$$ \Lambda_t = \sqrt{\log(8(m+2)/m)/2}/2 \leq 0.38$$

there exist \(\alpha_m(t)\)  such that:

Smearieness of Diffusion \(t\)-estimator

  • \( \alpha \leq \alpha_m(t) \): Unique diffusion                     \(t\)-mean 
  • \( \alpha > \alpha_m(t)\) : Infinitely many
  • \( \alpha < \alpha_m(t) \): 0-smeariness
  • \( \alpha = \alpha_m(t)\) : 2-smearieness

at times of magnetic pole reversal

Magnetic north pole positions

Thank you for your attention!

[1] Eltzner, Benjamin; Huckemann, Stephan F. A smeary central limit theorem for manifolds with application to high-dimensional spheres. Ann. Statist. 47 (2019), no. 6, 3360--3381. doi:10.1214/18-AOS1781.

 

[2] Huckemann, Stephan F. "INTRINSIC INFERENCE ON THE MEAN GEODESIC OF PLANAR SHAPES AND TREE DISCRIMINATION BY LEAF GROWTH." The Annals of Statistics 39, no. 2 (2011): 1098-124.

Law of large numbers

Fix

t>0, \enspace M
\mu
\mu_n
\mu_{n-1}
  1.           satisfies (ZC)
     
  2.           satisfies (BPC) if

compact Riemannian manifold,

X: \Omega \to M
E_t \neq \emptyset
(E_{t,n})
(E_{t,n})

Central limit theorem

Fix

t>0, \enspace M

Riemannian         manifold,

X: \Omega \to M
m-

Then for any measurable selection           is holds that

\sqrt{n}(V_1,...,V_n)^T \overset{\mathcal{D}}{\to} \mathcal{N}(0,\Sigma)

Assume (Uniqueness), (LLN) and (Taylor Expansion)

(\mu_{t,n})

where

  •  
  •  
  •  
  •  
x_n = \log_{\mu_t}\mu_{t,n}
V_i = (Rx_n)_i|(Rx_n)_i|^{r-2}
T=diag(T_1,...,T_m)
\Sigma = \frac{1}{r^2}T^{-1}\text{Cov}[\text{grad}_x(-\ln p(x,X,t))|_{x=0}]T^{-1}
Made with Slides.com