Shape transformations on manifolds

by Pernille Hansen

Affine transformation

Find matrix \(A\) such that

  •  \(AH_1 = A_2\)
  • \( ||H_2 - AH_1||_2 \) is minimized

.. Can we do this for manifold-

valued data?

 

Hand 1 \(H_1\), Hand 2 \(H_2\)

\varphi_\alpha
\varphi_\beta
U_\alpha
U_\beta
M
\mathbb{R}^n
\mathbb{R}^n

Manifolds

For every \( x\in M \):

  • \( log_x : M \to  T_x M\)
  • \( exp_x : T_x M \to M \)

The 2-Sphere

\( exp_x\)

Pick \( x_0 = (0,-1,0) \)

\( exp_{x_0}\)

\( exp_{x_0}\)

Q: Does the solution depend on \(x\)?

Hand 1 \(H_1\)

Hand 2 \(H_2\)

Compute \(A_{x_0} \) 

For \( i \in \{0,1,2,3\}\):

\(T_{x_i} S^2 \)

Compute \(A_{x_i} \) 

\(d(A_{x_0}H_1,A_{x_1}H_1):\)  0.082

\(d(A_{x_0}H_1,A_{x_2}H_1):\) 0.367

\(d(A_{x_0}H_1,A_{x_3}H_1):\)0.350

\(d(H_2,A_{x_0}H_1):\)  0.473

\(d(H_2,A_{x_1}H_1):\)  0.5032

\(d(H_2,A_{x_2}H_1):\) 0.4702

\(d(H_2,A_{x_3}H_1):\)0.5506

\(log_{x_0}\)

\( exp_{x_0}\)

For \( i \in \{0,1,2,3\}\):

\(T_{x_i} S^2 \)

Compute \(A_{x_i} \) 

\(d(A_{x_0}H_1,A_{x_1}H_1):\)  0.1515

\(d(A_{x_0}H_1,A_{x_2}H_1):\) 0.909

\(d(A_{x_0}H_1,A_{x_3}H_1):\)1.1004

\(d(H_2,A_{x_0}H_1):\)  1.0193

\(d(H_2,A_{x_1}H_1):\)  1.0081

\(d(H_2,A_{x_2}H_1):\) 1.1205

\(d(H_2,A_{x_3}H_1):\)1.2281

Thank you for listening!

Made with Slides.com