Database
DBMS
Types of Databases
RDBMS
Installation & Setup
A database is a collection of data stored in a format that can be easily accessed, managed and updated.
Most applications require a database to store and retrieve data.
A shopping website like Amazon will need a database to store data about customers, products, orders, suppliers etc.
Knowing how to monitor and optimize your database is essential for application performance.
Database management systems are software systems used to manage and manipulate data in a database.
A DBMS serves as an interface between an end-user and a database, allowing users to create, read, update, and delete data in the database.
Text
Text
A relational database example
ProductID | ProductName | CategoryId | Price |
---|---|---|---|
1 | Jean | 1 | 999 |
2 | Phillips Led | 2 | 220 |
3 | Trimmer | 2 | 1500 |
4 | T-Shirt | 1 | 499 |
ProductID | ProductName | CategoryId | Price |
---|---|---|---|
1 | Jean | 1 | 999 |
2 | Phillips Led | 2 | 220 |
3 | Trimmer | 2 | 1500 |
4 | T-Shirt | 1 | 499 |
CategoryId | CategoryName | Description |
---|---|---|
1 | Clothing | Clothes Mens & Girls |
2 | Electronics | Electronic items ... |
A relational database example
A relational database, or relational database management system (RDMS), stores information in tables. Often, these tables have shared information between them, causing a relationship to form between tables.
We use SQL to query these databases.
Example - One to Many Relationship
Database Schema
Relational databases are used in several applications
1. MySQL
2. Oracle
3. Microsoft SQL Server
4. PostgreSQL
Go to mysql.com Downloads Page.
Download and Install the following using installation wizard.
#include <bits/stdc++.h>
using namespace std;
void swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
}
// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{
int i, j;
for (i = 0; i < n-1; i++)
// Last i elements are already in place
for (j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1])
swap(&arr[j], &arr[j+1]);
}
/* Function to print an array */
void printArray(int arr[], int size)
{
int i;
for (i = 0; i < size; i++)
cout << arr[i] << " ";
cout << endl;
}
// Driver code
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
cout<<"Sorted array: \n";
printArray(arr, n);
return 0;
}
Code Web Dev [CodePen]
// This slide uses Auto-Animate to animate between
// two different code blocks
const distanceBetween = ( p1, p2 ) => {
// TODO
}
distanceBetween([10,10], [50,50])
Code Transitions
Bubble Sort Algorithm # include <bits/stdc++.h> using namespace std ; void swap ( int *xp, int *yp) { int temp = *xp; *xp = *yp; *yp = temp; } // A function to implement bubble sort void bubbleSort ( int arr[], int n) { int i, j; for (i = 0 ; i < n -1 ; i++) // Last i elements are already in place for (j = 0 ; j < n-i -1 ; j++) if (arr[j] > arr[j+ 1 ]) swap(&arr[j], &arr[j+ 1 ]); } /* Function to print an array */ void printArray ( int arr[], int size) { int i; for (i = 0 ; i < size; i++) cout << arr[i] << " " ; cout << endl ; } // Driver code int main () { int arr[] = { 64 , 34 , 25 , 12 , 22 , 11 , 90 }; int n = sizeof (arr)/ sizeof (arr[ 0 ]); bubbleSort(arr, n); cout << "Sorted array: \n" ; printArray(arr, n); return 0 ; } # include <bits/stdc++.h> using namespace std ; void swap ( int *xp, int *yp) { int temp = *xp; *xp = *yp; *yp = temp; } // A function to implement bubble sort void bubbleSort ( int arr[], int n) { int i, j; for (i = 0 ; i < n -1 ; i++) // Last i elements are already in place for (j = 0 ; j < n-i -1 ; j++) if (arr[j] > arr[j+ 1 ]) swap(&arr[j], &arr[j+ 1 ]); } /* Function to print an array */ void printArray ( int arr[], int size) { int i; for (i = 0 ; i < size; i++) cout << arr[i] << " " ; cout << endl ; } // Driver code int main () { int arr[] = { 64 , 34 , 25 , 12 , 22 , 11 , 90 }; int n = sizeof (arr)/ sizeof (arr[ 0 ]); bubbleSort(arr, n); cout << "Sorted array: \n" ; printArray(arr, n); return 0 ; } # include <bits/stdc++.h> using namespace std ; void swap ( int *xp, int *yp) { int temp = *xp; *xp = *yp; *yp = temp; } // A function to implement bubble sort void bubbleSort ( int arr[], int n) { int i, j; for (i = 0 ; i < n -1 ; i++) // Last i elements are already in place for (j = 0 ; j < n-i -1 ; j++) if (arr[j] > arr[j+ 1 ]) swap(&arr[j], &arr[j+ 1 ]); } /* Function to print an array */ void printArray ( int arr[], int size) { int i; for (i = 0 ; i < size; i++) cout << arr[i] << " " ; cout << endl ; } // Driver code int main () { int arr[] = { 64 , 34 , 25 , 12 , 22 , 11 , 90 }; int n = sizeof (arr)/ sizeof (arr[ 0 ]); bubbleSort(arr, n); cout << "Sorted array: \n" ; printArray(arr, n); return 0 ; } # include <bits/stdc++.h> using namespace std ; void swap ( int *xp, int *yp) { int temp = *xp; *xp = *yp; *yp = temp; } // A function to implement bubble sort void bubbleSort ( int arr[], int n) { int i, j; for (i = 0 ; i < n -1 ; i++) // Last i elements are already in place for (j = 0 ; j < n-i -1 ; j++) if (arr[j] > arr[j+ 1 ]) swap(&arr[j], &arr[j+ 1 ]); } /* Function to print an array */ void printArray ( int arr[], int size) { int i; for (i = 0 ; i < size; i++) cout << arr[i] << " " ; cout << endl ; } // Driver code int main () { int arr[] = { 64 , 34 , 25 , 12 , 22 , 11 , 90 }; int n = sizeof (arr)/ sizeof (arr[ 0 ]); bubbleSort(arr, n); cout << "Sorted array: \n" ; printArray(arr, n); return 0 ; }
/* * . * . * * .
. * move your mouse to over the stars .
* . . change these values: . *
. * . . * . */
const STAR_COLOR = '#fff';
const STAR_SIZE = 3;
const STAR_MIN_SCALE = 0.2;
const OVERFLOW_THRESHOLD = 50;
const STAR_COUNT = ( window.innerWidth + window.innerHeight ) / 8;
const canvas = document.querySelector( 'canvas' ),
context = canvas.getContext( '2d' );
let scale = 1, // device pixel ratio
width,
height;
let stars = [];
let pointerX,
pointerY;
let velocity = { x: 0, y: 0, tx: 0, ty: 0, z: 0.0005 };
let touchInput = false;
generate();
resize();
step();
window.onresize = resize;
canvas.onmousemove = onMouseMove;
canvas.ontouchmove = onTouchMove;
canvas.ontouchend = onMouseLeave;
document.onmouseleave = onMouseLeave;
function generate() {
for( let i = 0; i < STAR_COUNT; i++ ) {
stars.push({
x: 0,
y: 0,
z: STAR_MIN_SCALE + Math.random() * ( 1 - STAR_MIN_SCALE )
});
}
}
function placeStar( star ) {
star.x = Math.random() * width;
star.y = Math.random() * height;
}
function recycleStar( star ) {
let direction = 'z';
let vx = Math.abs( velocity.x ),
vy = Math.abs( velocity.y );
if( vx > 1 || vy > 1 ) {
let axis;
if( vx > vy ) {
axis = Math.random() < vx / ( vx + vy ) ? 'h' : 'v';
}
else {
axis = Math.random() < vy / ( vx + vy ) ? 'v' : 'h';
}
if( axis === 'h' ) {
direction = velocity.x > 0 ? 'l' : 'r';
}
else {
direction = velocity.y > 0 ? 't' : 'b';
}
}
star.z = STAR_MIN_SCALE + Math.random() * ( 1 - STAR_MIN_SCALE );
if( direction === 'z' ) {
star.z = 0.1;
star.x = Math.random() * width;
star.y = Math.random() * height;
}
else if( direction === 'l' ) {
star.x = -OVERFLOW_THRESHOLD;
star.y = height * Math.random();
}
else if( direction === 'r' ) {
star.x = width + OVERFLOW_THRESHOLD;
star.y = height * Math.random();
}
else if( direction === 't' ) {
star.x = width * Math.random();
star.y = -OVERFLOW_THRESHOLD;
}
else if( direction === 'b' ) {
star.x = width * Math.random();
star.y = height + OVERFLOW_THRESHOLD;
}
}
function resize() {
scale = window.devicePixelRatio || 1;
width = window.innerWidth * scale;
height = window.innerHeight * scale;
canvas.width = width;
canvas.height = height;
stars.forEach( placeStar );
}
function step() {
context.clearRect( 0, 0, width, height );
update();
render();
requestAnimationFrame( step );
}
function update() {
velocity.tx *= 0.96;
velocity.ty *= 0.96;
velocity.x += ( velocity.tx - velocity.x ) * 0.8;
velocity.y += ( velocity.ty - velocity.y ) * 0.8;
stars.forEach( ( star ) => {
star.x += velocity.x * star.z;
star.y += velocity.y * star.z;
star.x += ( star.x - width/2 ) * velocity.z * star.z;
star.y += ( star.y - height/2 ) * velocity.z * star.z;
star.z += velocity.z;
// recycle when out of bounds
if( star.x < -OVERFLOW_THRESHOLD || star.x > width + OVERFLOW_THRESHOLD || star.y < -OVERFLOW_THRESHOLD || star.y > height + OVERFLOW_THRESHOLD ) {
recycleStar( star );
}
} );
}
function render() {
stars.forEach( ( star ) => {
context.beginPath();
context.lineCap = 'round';
context.lineWidth = STAR_SIZE * star.z * scale;
context.globalAlpha = 0.5 + 0.5*Math.random();
context.strokeStyle = STAR_COLOR;
context.beginPath();
context.moveTo( star.x, star.y );
var tailX = velocity.x * 2,
tailY = velocity.y * 2;
// stroke() wont work on an invisible line
if( Math.abs( tailX ) < 0.1 ) tailX = 0.5;
if( Math.abs( tailY ) < 0.1 ) tailY = 0.5;
context.lineTo( star.x + tailX, star.y + tailY );
context.stroke();
} );
}
function movePointer( x, y ) {
if( typeof pointerX === 'number' && typeof pointerY === 'number' ) {
let ox = x - pointerX,
oy = y - pointerY;
velocity.tx = velocity.tx + ( ox / 8*scale ) * ( touchInput ? 1 : -1 );
velocity.ty = velocity.ty + ( oy / 8*scale ) * ( touchInput ? 1 : -1 );
}
pointerX = x;
pointerY = y;
}
function onMouseMove( event ) {
touchInput = false;
movePointer( event.clientX, event.clientY );
}
function onTouchMove( event ) {
touchInput = true;
movePointer( event.touches[0].clientX, event.touches[0].clientY, true );
event.preventDefault();
}
function onMouseLeave() {
pointerX = null;
pointerY = null;
}
// This slide uses Auto-Animate to animate between
// two different code blocks
const distanceBetween = ( p1, p2 ) => {
// TODO
}
distanceBetween([10,10], [50,50])
// Measure the distance between two points
const distanceBetween = ( p1, p2 ) => {
const dx = p1[0]-p2[0];
const dy = p1[1]-p2[1];
return Math.sqrt( dx*dx + dy*dy );
}
distanceBetween([10,10], [50,50])
Given an array of size N, reverse the array.
Sample Input
N = 5
arr[] = {1,2,3,4,5}
Sample Output
5,4,3,2,1
During the ideation phase, expect to discuss the project in depth to clearly understand the goals and requirements.
During the ideation phase, expect to discuss the project in depth to clearly understand the goals and requirements.
During the ideation phase, expect to discuss the project in depth to clearly understand the goals and requirements.
With built-in \LaTeXLATEX typesetting, you can include math formulas like this:
f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi
Our design team has a collective 75 years of experience in crafting digital products.
Our diverse backgrounds offer a thorough mix of points of view.
C++ | Java | Python |
---|---|---|
Discovery of requirements for a project.
Creating a Plan that sets the requirements for the design and build phases.
Review and Iterate on the designs with testing of ideas, client feedback and prototypes.
Review and Iterate on the designs with testing of ideas, client feedback and prototypes.
Research into the project space, competitors and the market.
Design a number of iterations that capture the plans and requirements.
Build the project to an MVP to test and evaluate. Iterate using these learnings.