Raquel Alegre
RSDG meeting, 25th April 2019
Data sources:
date, time, position (lat, lon), type of vessel, navigation status, etc., on CSV format
Polygon data - Maritime Policy data:
What made the data difficult to deal with:
POINT(0 0)
LINESTRING(0 0,1 1,1 2)
CIRCULARSTRING(0 0, 1 1, 1 0)
POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))
GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))
-- Polygon with a hole
POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))
import pyproj
transformer = pyproj.Transformer.from_crs("EPSG:27700", "EPSG:4326")
coord = transformer.transform(lat, lon)
ST_Contains (A, B)
ST_Intersects (A, B)
ST_Length (A)
ST_Distance (A, B), ST_DWithin (A, B, r)
ST_Area (A)
ST_GeomFrom[KML|GML|GeoJSON |...]()
ST_MakeLine({points})
ST_Polygonize()
ST_BuildArea(multiline string)
ST_Union(geometry[])
At carto.com you can:
Software as a Service cloud computing platform that provides GIS and web mapping tools for display in a web browser.
Demo!
20% data points in CartoDB
400K points: ~1% of the data points in CartoDB