Geometry of Light

Refath Bari

Purpose

  • Lorentz Transformation from Maxwell's Equations
  • Time Dilation from Point Charge and Infinite Sheet
  • Displacement Current from Biot-Savart Law

Illustrate the relationship between Electromagnetism & Special Relativity

Properties of Light

Spoiler!

Light is lazy

Property I

Light travels straight

Property II

Reflects off equal angles

Goal: Get from A to B if you have to hit the metal

A

B

A

B

D

A

B

D

A

B

D

E

AE+BE

Minimize

A

B

D

E

C

B'

A

B

D

E

C

B'

A

B

D

E

C

B'

F

A

B

D

E

C

B'

F

BF = BF'

A

B

D

E

C

B'

F

\angle BFC = 90
BF = BF'

A

B

D

E

C

B'

F

BF = BF'
\angle BFC = 90

A

B

D

E

C

B'

F

BF = BF'
\angle BFC = 90
AE+BE

Minimize

A

B

D

E

C

B'

F

BF = BF'
\angle BFC = 90
AE+BE

Minimize

AE+B'E

A

B

E

B'

F

BF = BF'
\angle BFC = 90
AE+BE

Minimize

AE+B'E

A

B

E

A

B

E

A

B

E

{\theta}_{i}
{\theta}_{r}

A

B

E

{\theta}_{i}
{\theta}_{r}
{\theta}_{i} = {\theta}_{r}
{\theta}_{i} = {\theta}_{r}

Property III

Light refracts in different mediums

{\theta}_{i}
{\theta}_{r}
{\theta}_{i}
{\theta}_{r}
{n}_{1}
{n}_{2}
{\theta}_{i}
{\theta}_{r}
{n}_{1}
{n}_{2}

Properties

  • Light travels straight
  • Light reflects in equal angles
  • Light refracts in different medius

Properties

+

+

Properties

+

+

Properties

+

+

Properties

+

+

Brachistochrone Problem

Brachistochrone Problem

4th Property?

\nabla \cdot E=\frac { \rho }{ \varepsilon _{ 0 } }
\nabla \cdot B= 0
\nabla \times E=-\frac { \partial B }{ \partial t }
\nabla \times B=\mu _{ 0 }j+\frac { 1 }{ { c }^{ 2 } } \frac { \partial E }{ \partial t }
v
c
v+c
c

Error: Galilean Relativity

Correction: Special Relativity

Lorentz Transformation

from Maxwell's Equations

Time Dilation

from Point Charge and Infinite Sheet

v

v

Q

v

v

Q

v

v

{ v }_{ y }^{ ' }(t)=\frac { QEt' }{ m }
{ v }_{ y }(t)=\frac { QEt' }{ m } \left( 1-\frac { { v }^{ 2 } }{ { c }^{ 2 } } \right)

Displacement Current

from Biot-Savart Law and Special Relativity

\frac { \partial E }{ \partial t } =\frac { \partial E }{ \partial x } \cdot \frac { \partial x }{ \partial t }
E_{ \parallel }=E'_{ \parallel }\\ B_{ \parallel }=0\\ E_{ \perp }=\gamma E'_{ \perp }\\ B=+\gamma \frac { v }{ c^{ 2 } } \times E'
\frac { \partial B }{ \partial t } =\gamma { \mu }_{ 0 }v\times ({ \varepsilon }_{ 0 }\frac { \partial E }{ \partial t } )

Summary

  • Lorentz Transformations from Maxwell's Equations
  • Time Dilation from Electromagnetic Scenario
  • Displacement Current from Biot-Savart Law

Thank You ...

 

Dr. Kabat,

My teachers,

Mom, Dad, Little Brother

Storage

Privately stored in the cloud

Made with Slides.com