Santiago Casas,
with Isabella Carucci, Valeria Pettorino,
Stefano Camera, Matteo Martinelli
arXiv:2210.05705 Phys.Dark Univ. 39 (2023) 101151
Cosmic Microwave Background
Planck 2018 CMB Temperature map (Commander) . wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
Large Scale Structure
Illustris Simulation: www.nature.com/articles/nature13316
Santiago Casas, 17.01.23
Concordance Cosmology:
Santiago Casas, 17.01.23
O(100) orders of magnitude wrong
(Zeldovich 1967, Weinberg 1989, Martin 2012).
Composed of naturalness and coincidence
sub-problems, among others.
Quantum Gravity?
Santiago Casas, 17.01.23
Planck, Clusters and Lensing tension on clustering amplitude σ8
KiDS 1000 Cosmology, arXiv:2010:16416
L.Verde, et al 2019. arXiv:1907.10625
Santiago Casas, 17.01.23
Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018
Santiago Casas, 17.01.23
In ΛCDM the two linear gravitational potentials Ψ and Φ are equal to each other
We can describe general modifications of gravity (of the metric) at the linear level with 2 functions of scale (k) and time (a)
Only two independent functions
Santiago Casas, 17.01.23
Planck 2015 results XIV, arXiv:1502.01590
Planck 2018 results VI, arXiv:1807.06209
Casas et al (2017), arXiv:1703.01271
Forecasts for Stage-IV surveys in:
Santiago Casas, 17.01.23
Santiago Casas, 17.01.23
21cm Intensity Mapping
Image credit: Sunayana Bhargava
Santiago Casas, 17.01.23
Santiago Casas, 17.01.23
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structures
Santiago Casas, 17.01.23
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structures
Santiago Casas, 17.01.23
HI galaxies spectroscopic survey
SKA1 Redbook 2018, arXiv:1811.02743
SKA1 Medium Deep Band 2: 5000deg2
Santiago Casas, 17.01.23
SKA1 Redbook 2018, arXiv:1811.02743
Continuum galaxy survey
SKA1 Medium Deep Band 2: 5000deg2
Santiago Casas, 17.01.23
*kindly provided by Stefano Camera
Continuum galaxy survey
SKA1 Medium Deep Band 2: 5000deg2
Santiago Casas, 17.01.23
BAO
Clustering
RSD
Spec-z
Euclid Collaboration, IST:Forecasts, arXiv: 1910.09273
Santiago Casas, 17.01.23
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Directly constrains MG function Σ through Weyl potential
Santiago Casas, 17.01.23
SKA1 Medium Deep Band 1: 20000deg2
Santiago Casas, 17.01.23
PIM(z,k)=TˉIM(z)2AP(z)Krsd2(z,μ;bHI)
FoG(z,k,μθ)×Pδδ,dw(z,k)
ΩHI =4(1+z)0.6×10−4
TˉIM(z)=189hH(z)(1+z)2H0ΩHI(z)mK
Jolicoeur et al (2020) arXiv:2009.06197
Carucci et al (2020) arXiv:2006.05996
Krsd(z,μ;bHI)=[bHI(z)2+f(z)μ2]
bHI(z)=0.3(1+z)+0.6
Santiago Casas, 17.01.23
bg(z)= fit to simulations for given galaxy sample
Jolicoeur et al (2020) arXiv:2009.06197
Wolz et al (2021) arXiv:2102.04946
σi(z)=H(z)c(1+z)δz
PIM×g(z,k)=TˉIM(z)AP(z)rIM,opt Krsd(z,μ;bHI)
×Krsd(z,μ;bg)FoG(z,k,μθ)Pδδ,dw(z,k)
×exp[−21k2μ2(σIM(z)2+σsp(z)2)]
Santiago Casas, 17.01.23
* Beam term in appendix
Santiago Casas, 17.01.23
Euclid space satellite, now waiting in Cannes
Santiago Casas, 17.01.23
Specialized in Galaxy Clustering
Santiago Casas, 17.01.23
Specialized in Photometric Angular Probes: Lensing and Clustering
Santiago Casas, 17.01.23
Santiago Casas, 17.01.23
Given a likelihood function L, representing the probability of the data d, given the model parameters Θ , the Fisher matrix is defined as the Hessian of the L:
Assuming that L is a multivariate Gaussian distribution with a covariance matrix C independent of Θ :
The explicit form of F, depends on the given observational probe and the physical model assumption, for example for GCsp:
Santiago Casas, 17.01.23
What do we expect from the forecasts before doing them, just by looking at the formulas and the specs?
Let's see the results !
Santiago Casas, 17.01.23
Santiago Casas, 17.01.23
Santiago Casas, 17.01.23
Santiago Casas, 17.01.23
DESI_E : high-z Emission Line Galaxies
DESI_B: low-z Bright Galaxy Sample
SKAO GCsp: low-z HI Galaxies
Santiago Casas, 17.01.23
Santiago Casas, 17.01.23
Santiago Casas, 17.01.23
Santiago Casas, 17.01.23
Text
Backup slide
Santiago Casas
SKA1:
GC+WL+XC (Continuum) +
IM (HI 21cm) + GCsp(HI)
vs
Euclid
(Gcsp+GCph+WL+XCph)
vs
Euclid
(Gcsp+GCph+WL+XCph)+SKA1 Pk-probes.
Unfortunately, the μ constraints from Euclid alone dominate over the improvement that SKA1 "Pk-probes" add
PRELIMINARY
Backup slide
Testing at higher H0 value
Santiago Casas, 06.12.22
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 06.12.22
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 02.11.21
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Number of dishes
Effective beam
βSD=exp[−8ln2k⊥r(z)2θb(z)2]
αSD =Nd1
Jolicoeur et al (2020) arXiv:2009.06197
Backup slide
Backup slide
Backup slide
Backup slide