Santiago Casas,
Isabella Carucci, Valeria Pettorino,
Stefano Camera, Matteo Martinelli
Cosmic Microwave Background
Planck 2018 CMB Temperature map (Commander) . wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
Large Scale Structure
Illustris Simulation: www.nature.com/articles/nature13316
Santiago Casas, 15.04.21
Concordance Cosmology:
Santiago Casas, 15.04.21
O(100) orders of magnitude wrong
(Zeldovich 1967, Weinberg 1989, Martin 2012).
Composed of naturalness and coincidence
sub-problems, among others.
Quantum Gravity?
Santiago Casas, 15.04.21
Planck, Clusters and Lensing tension on clustering amplitude \(\sigma_8\)
KiDS 1000 Cosmology, arXiv:2010:16416
L.Verde, et al 2019. arXiv:1907.10625
Santiago Casas, 15.04.21
Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018
Santiago Casas, 15.04.21
In \(\Lambda\)CDM the two linear gravitational potentials \(\Psi\) and \(\Phi\) are equal to each other
We can describe general modifications of gravity (of the metric) at the linear level with 2 functions of scale (\(k\)) and time (\(a\))
Only two independent functions
Santiago Casas, 15.04.21
Planck 2015 results XIV, arXiv:1502.01590
Planck 2018 results VI, arXiv:1807.06209
Casas et al (2017), arXiv:1703.01271
Forecasts for Stage-IV surveys in:
Santiago Casas, 15.04.21
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 15.04.21
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 15.04.21
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structres
Santiago Casas, 15.04.21
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structres
Santiago Casas, 15.04.21
HI galaxies spectroscopic survey
SKA1 Redbook 2018, arXiv:1811.02743
SKA1 Medium Deep Band 2: \(5000 \, \rm{deg}^2\)
Santiago Casas, 15.04.21
BAO
Clustering
RSD
Spec-z
Euclid Collaboration, IST:Forecasts, arXiv: 1910.09273
Santiago Casas, 15.04.21
SKA1 Redbook 2018, arXiv:1811.02743
SKA1 Medium Deep Band 2: \(5000 \, \rm{deg}^2\)
Continuum galaxy survey
Santiago Casas, 15.04.21
*kindly provided by Stefano Camera
SKA1 Medium Deep Band 2: \(5000 \, \rm{deg}^2\)
Continuum galaxy survey
Santiago Casas, 15.04.21
Directly constrains MG function \(\Sigma\) through Weyl potential
Santiago Casas, 15.04.21
SKA1 Medium Deep Band 1: \(20000 \,\rm{deg}^2\)
Santiago Casas, 15.04.21
\(P^{\rm IM}(z,k) = \bar{T}_{IM}(z)^2[b_{\rm IM}(z)^2+f(z)\mu^2]^2P_{\delta\delta,zs}(z,k) \)
\( b_{IM}(z) = 0.3(1+z) + 0.6 \)
\(\Omega_{HI} = 4(1+z)^{0.6} \times 10^{-4} \)
\( \bar{T}_{\mathrm{IM}}(z)= 189h \frac{(1+z)^2 H_0}{H(z)}\Omega_{HI}(z) \,\,{\rm mK} \)
Jolicoeur et al (2020) arXiv:2009.06197
Carucci et al (2020) arXiv:2006.05996
Santiago Casas, 15.04.21
\( b_{\rm g}(z) = \) fit to simulations for given galaxy sample
Jolicoeur et al (2020) arXiv:2009.06197
Wolz et al (2021) arXiv:2102.04946
\(\sigma_i(z) = \frac{c}{H(z)}(1+z) \delta_z\)
\(P^{{\rm IM} \times \rm{GC}}(z,k) = \bar{T}_{\rm IM}(z) [b_{\rm IM}(z)^2+f(z)\mu^2] \times [b_{\rm g}(z)^2+f(z)\mu^2] P_{\delta\delta,zs}(z,k) \times \exp[-\frac{1}{2} k^2 \mu^2 (\sigma_{\rm IM}(z)^2+\sigma_{\rm sp}(z)^2)] r_{\rm IM,opt} \)
Santiago Casas, 15.04.21
Santiago Casas, 15.04.21
Number of dishes
Effective beam
\(\beta_{SD} = \exp[-\frac{k_\perp r(z)^2 \theta_b (z)^2}{8 \ln 2}] \)
\( \alpha_{SD} = \frac{1}{N_d} \)
Jolicoeur et al (2020) arXiv:2009.06197
Santiago Casas, 15.04.21
Santiago Casas, 15.04.21
Santiago Casas, 15.04.21
Santiago Casas, 15.04.21
Euclid GCsp
+
SKA1 GCsp (HI galaxies)
PRELIMINARY
Santiago Casas, 15.04.21
SKA1:
GCsp (HI galaxies)
WL (Continuum)
PRELIMINARY
Santiago Casas, 15.04.21
SKA1:
GCsp (HI galaxies)
IM
(21cm HI)
PRELIMINARY
Santiago Casas, 15.04.21
SKA1:
GCsp (HI galaxies)+IM (HI 21cm)
vs.
GC+WL+XC (Continuum)
PRELIMINARY
Santiago Casas, 15.04.21
SKA1:
GCsp (HI galaxies) +
GC+WL+XC (Continuum)
+ IM (HI 21cm)
PRELIMINARY
Santiago Casas, 15.04.21
SKA1:
GCsp (HI galaxies) , GC+WL+XC (Continuum), + IM (HI 21cm)
Combined constraints on \(\mu\)-\(\Sigma\) ~ 3%
PRELIMINARY
Santiago Casas, 15.04.21
SKA1:
GC+WL+XC (Continuum) +
IM (HI 21cm) + GCsp(HI)
and Planck'15
PRELIMINARY
Santiago Casas, 15.04.21
SKA1:
GC+WL+XC (Continuum) +
IM (HI 21cm) + GCsp(HI)
+ Planck'15
PRELIMINARY
Santiago Casas, 15.04.21
SKA1-All+Planck:
\(\sigma\)[\(\mu\)-\(\Sigma\)] ~ [3, 1.5]%
Euclid-All+Planck:
\(\sigma\)[\(\mu\)-\(\Sigma\)] ~ [1.8, 0.5]%
*Optimistic scenario
PRELIMINARY
Santiago Casas, 15.04.21
PRELIMINARY
SKA1:
GC+WL+XC (Continuum) +
IM (HI 21cm) + GCsp(HI)
Santiago Casas, 15.04.21
Text
Santiago Casas, 15.04.21
SKA1:
GC+WL+XC (Continuum) +
IM (HI 21cm) + GCsp(HI)
vs
Euclid
(Gcsp+GCph+WL+XCph)
vs
Euclid
(Gcsp+GCph+WL+XCph)+SKA1 Pk-probes.
Unfortunately, the \(\mu\) constraints from Euclid alone dominate over the improvement that SKA1 "Pk-probes" add
PRELIMINARY
Backup slide
Backup slide
Backup slide
Backup slide
Backup slide
Backup slide