Underline = Cmd+u
April 2025 @ Chalmers University of Technology (online)
Sadashige Ishida (ISTA)
To discuss a collaborative project
To introduce myself and some taste of my work
Sadashige, a PhD student @ ISTA (near Vienna)
Geometry & Dynamics in Math
Sadashige, a PhD student @ ISTA (near Vienna)
Geometry & Dynamics in Math, Physics, CS
Sadashige, a PhD student @ ISTA (near Vienna)
Dynamics as \(\infty\)-dim geometry
e.g. fluids, optimal transport, shapes
Geometry & Dynamics in Math, Physics, CS
Sadashige, a PhD student @ ISTA (near Vienna)
Dynamics as \(\infty\)-dim geometry
e.g. fluids, optimal transport, shapes
+ their finite-dim approximations
a.k.a. discretization
Dynamics as \(\infty\)-dim geometry
e.g. fluids, optimal transport, shapes
Geometry & Dynamics in Math, Physics, CS
+ their finite-dim approximations
a.k.a. discretization
Sadashige, a PhD student @ ISTA (near Vienna)
Geometry & Dynamics in Math, Physics, CS
Sadashige, a final year PhD student @ ISTA (near Vienna)
Dynamics as \(\infty\)-dim geometry
e.g. fluids, optimal transport, shapes
Geometry & Dynamics in Math, Physics, CS
+ their finite-dim approximations
a.k.a. discretization
Sadashige, a final year PhD student @ ISTA (near Vienna)
Dynamics as \(\infty\)-dim geometry
e.g. fluids, optimal transport, shapes
Geometry & Dynamics in Math, Physics, CS
+ their finite-dim approximations
a.k.a. discretization
Sadashige, a final year PhD student @ ISTA (near Vienna)
On the shape space of space curves,
only one symplectic structure was known.
We found more.
Martin Bauer Peter Michor
This is an experimental study.
One can define different dynamics by inputting different Hamiltonians.
But what if we use different symplectic structures to invoke different dynamics?
We tried it for space curves
Space with
a symplectic structure \(\Omega\)
A function \(H\)
Dynamics \(V_H\)
A symplectic structure \(\Omega\)
A function \(H\)
Dynamics
A symplectic structure \(\Omega\)
A function \(H\)
Dynamics
i.e. 2-form
$$ dH = \Omega(V_H, \cdot)$$
$$ \dot x =V_H$$
A symplectic structure \(\Omega\) is a 2-form on a manifold \(X\) s.t.
A symplectic structure \(\Omega\) is a 2-form on a manifold \(X\) s.t.
A symplectic structure \(\Omega\) is a 2-form on a manifold \(X\) s.t.
For \(H \colon X\to \mathbb{R}\),
Hamiltonian vector field \(V_H\in \Gamma(TX)\) is the one
$$ dH = \Omega(V_H, \cdot). $$
For \(H \colon X\to \mathbb{R}\),
Hamiltonian vector field \(V_H\in \Gamma(TX)\) is the one
$$ dH = \Omega(V_H, \cdot). $$
The Hamiltonian dynamics
$$\dot x=V_H(x).$$
Has nice properties.
E.g.
\(T^*M^n\)
\(T^*\operatorname{SDiff}(M)\)
Celestial mechanics
\(C^\infty(M,\mathbb{C})\)
Schrödinger equation
Incompressible fluids
\(T^*M^n\)
\(T^*\operatorname{SDiff}(M)\)
Celestial mechanics
\(C^\infty(M,\mathbb{C})\)
Schrödinger equation
Incompressible fluids
We consider the space of space curves
\(T^*M^n\)
\(T^*\operatorname{SDiff}(M)\)
Celestial mechanics
\(C^\infty(M,\mathbb{C})\)
Schrödinger equation
Incompressible fluids
We consider the space of space curves
(and the space of wave functions).
We consider the space of space curves
$$\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)=\{ c\colon \mathbb{S}^1\to\mathbb{R}^3, \partial_\theta c\neq 0 \ \forall \theta\in\mathbb{S}^1 \}$$
Parametrized curves
$$\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)=\{ c\colon \mathbb{S}^1\to\mathbb{R}^3, \partial_\theta c\neq 0 \ \forall \theta\in\mathbb{S}^1 \}$$
Parametrized curves
$$T_c\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)=C^\infty(\mathbb{S}^1,\mathbb{R}^3)$$
Tangent space
$$\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)=\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)/\operatorname{Diff}^+(\mathbb{S}^1)$$
Unparametrized curves a.k.a. shape space
$$\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)=\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)/\operatorname{Diff}^+(\mathbb{S}^1)$$
Unparametrized curves a.k.a. shape space
$$\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)$$
$$\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)$$
\[\Bigg\downarrow \pi\]
\[\curvearrowright\]
$$\operatorname{Diff}^+(\mathbb{S}^1)$$
$$\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)=\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)/\operatorname{Diff}^+(\mathbb{S}^1)$$
Unparametrized curves a.k.a. shape space
Tangent space
$$T_{[c]}\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)=T_c\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)/\ker d\pi_c$$
$$\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)$$
$$\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)$$
\[\Bigg\downarrow \pi\]
\[\curvearrowright\]
$$\operatorname{Diff}^+(\mathbb{S}^1)$$
$$\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)=\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)/\operatorname{Diff}^+(\mathbb{S}^1)$$
Unparametrized curves a.k.a. shape space
Tangent space
$$T_{[c]}\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)=T_c\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)/\ker d\pi_c$$
$$\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)$$
$$\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)$$
\[\Bigg\downarrow \pi\]
\[\curvearrowright\]
$$\operatorname{Diff}^+(\mathbb{S}^1)$$
\(\{a.\partial_\theta c \mid a\in C^\infty(\mathbb{S}^1)\}\)
curve tangent
$$\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)=\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)/\operatorname{Diff}^+(\mathbb{S}^1)$$
Unparametrized curves a.k.a. shape space
Tangent space
$$T_{[c]}\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)=T_c\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)/\ker d\pi_c$$
$$\eqsim\{h \in T_c \operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)\mid h\perp \partial_\theta c \}$$
$$\operatorname{UImm}(\mathbb{S}^1,\mathbb{R}^3)$$
$$\operatorname{Imm}(\mathbb{S}^1,\mathbb{R}^3)$$
\[\Bigg\downarrow \pi\]
\[\curvearrowright\]
$$\operatorname{Diff}^+(\mathbb{S}^1)$$
\(\{a.\partial_\theta c \mid a\in C^\infty(\mathbb{S}^1)\}\)
curve tangent
The Marsden-Weinstein structure
\[\Omega_{[c]}\colon T_{[ c]}\operatorname{UImm}\times T_{[ c]}\operatorname{UImm}\to \mathbb{R},\]
\[\Omega_{[c]}\colon T_{[ c]}\operatorname{UImm}\times T_{[ c]}\operatorname{UImm}\to \mathbb{R},\]
The Marsden-Weinstein structure
\[\Omega_{[c]}([h],[k])=\int_{\mathbb{S}^1}\langle D_s c\times h, k\rangle ds\]
where
\[D_s = \frac{\partial_\theta }{|\partial_\theta c|}, \quad ds = |\partial_\theta c| d\theta \]
unit tangent
\[\Omega_{[c]}\colon T_{[ c]}\operatorname{UImm}\times T_{[ c]}\operatorname{UImm}\to \mathbb{R},\]
Symplectic!
The Marsden-Weinstein structure
\[\Omega_{[c]}([h],[k])=\int_{\mathbb{S}^1}\langle D_s c\times h, k\rangle ds\]
where
\[D_s = \frac{\partial_\theta }{|\partial_\theta c|}, \quad ds = |\partial_\theta c| d\theta \]
unit tangent
\[\Omega_{[c]}\colon T_{[ c]}\operatorname{UImm}\times T_{[ c]}\operatorname{UImm}\to \mathbb{R},\]
Closed \(d\Omega=0\),
Symplectic!
The Marsden-Weinstein structure
\[\Omega_{[c]}([h],[k])=\int_{\mathbb{S}^1}\langle D_s c\times h, k\rangle ds\]
where
\[D_s = \frac{\partial_\theta }{|\partial_\theta c|}, \quad ds = |\partial_\theta c| d\theta \]
unit tangent
\[\Omega_{[c]}\colon T_{[ c]}\operatorname{UImm}\times T_{[ c]}\operatorname{UImm}\to \mathbb{R},\]
Closed \(d\Omega=0\),
Symplectic!
The Marsden-Weinstein structure
\[\Omega_{[c]}([h],[k])=\int_{\mathbb{S}^1}\langle D_s c\times h, k\rangle ds\]
where
\[D_s = \frac{\partial_\theta }{|\partial_\theta c|}, \quad ds = |\partial_\theta c| d\theta \]
Non-degenerate \(\ker \Omega_{[c]}=[0]=\{a.D_s c \mid a \in C^\infty(\mathbb{S}^1)\}\)
unit tangent
E.g.
Hamiltonian \(H = \operatorname{Length}([c])\)
Binormal flow
Dynamics \(V_H=[D_s c \times D_s^2 c]\)
E.g.
Hamiltonian \(H = \operatorname{Length}([c])\)
Binormal flow
Dynamics \(V_H=[D_s c \times D_s^2 c]\)
A completely integrable system
Remember
A symplectic structure \(\Omega\) defines a Hamiltonian dynamics \(V_H\) via $$dH=\Omega(V_H,\cdot).$$
A different \(\Omega\) defines different \(V_H\).
Remember
A symplectic structure \(\Omega\) defines a Hamiltonian dynamics \(V_H\) via $$dH=\Omega(V_H,\cdot).$$
A different \(\Omega\) defines different \(V_H\).
But only one \(\Omega\) is known on \(\operatorname{UImm}\).
Remember
A symplectic structure \(\Omega\) defines a Hamiltonian dynamics \(V_H\) via $$dH=\Omega(V_H,\cdot).$$
A different \(\Omega\) defines different \(V_H\).
We found more
But only one \(\Omega\) is known on \(\operatorname{UImm}\).
Remember
A symplectic structure \(\Omega\) defines a Hamiltonian dynamics \(V_H\) via $$dH=\Omega(V_H,\cdot).$$
A different \(\Omega\) defines different \(V_H\).
We found more
But only one \(\Omega\) is known on \(\operatorname{UImm}\).
Remember
A symplectic structure \(\Omega\) defines a Hamiltonian dynamics \(V_H\) via $$dH=\Omega(V_H,\cdot).$$
by combining 2 hints.
a Riemannian metric on \(\operatorname{Imm}\)
$$ g(h,k)=\int_{\mathbb{S}^1} \langle h,k\rangle ds$$
a Riemannian metric on \(\operatorname{Imm}\)
$$ g(h,k)=\int_{\mathbb{S}^1} \langle h,k\rangle ds$$
a suitable operator
$$L\colon T\operatorname{Imm}\to T\operatorname{Imm}. $$
a Riemannian metric on \(\operatorname{Imm}\)
$$ g(h,k)=\int_{\mathbb{S}^1} \langle h,k\rangle ds$$
New metric $$g^L(h,k)\coloneqq g(h,Lk) $$
a suitable operator
$$L\colon T\operatorname{Imm}\to T\operatorname{Imm}. $$
e.g. \(L_c=\operatorname{id}_c\),
$$g^{\operatorname{id}}_c(h,k)=\int_{\mathbb{S}^1} \langle h,k\rangle ds$$
e.g. \(L_c=\operatorname{id}_c\),
$$g^{\operatorname{id}}_c(h,k)=\int_{\mathbb{S}^1} \langle h,k\rangle ds$$
e.g. \(L_c=\lambda(c)\) with a conformal factor \(\lambda\colon \operatorname{Imm}\to \mathbb{R}_{>0}\)
$$g^{\lambda}_c(h,k)=\lambda(c)\int_{\mathbb{S}^1} \langle h,k\rangle ds$$
e.g. \(L_c=\operatorname{id}_c\),
$$g^{\operatorname{id}}_c(h,k)=\int_{\mathbb{S}^1} \langle h,k\rangle ds$$
e.g. Sobolev-type differential operator \(L_c=\operatorname{id}-D_s^2\)
$$g^{\operatorname{id}-D_s^2}_c(h,k)=\int_{\mathbb{S}^1} \langle h,k\rangle -\langle h, D_s^2 k \rangle ds = \int_{\mathbb{S}^1} \langle h,k\rangle + \langle D_s h, D_s k \rangle ds $$
e.g. \(L_c=\lambda(c)\) with a conformal factor \(\lambda\colon \operatorname{Imm}\to \mathbb{R}_{>0}\)
$$g^{\lambda}_c(h,k)=\lambda(c)\int_{\mathbb{S}^1} \langle h,k\rangle ds$$
i.e. there is a 1-form \(\Theta\) s.t. \(\Omega=d\Theta\).
Marsden-Weinstein form \(\Omega\) is exact
Marsden-Weinstein form \(\Omega\) is exact
\(\Theta\) is given by
$$\Theta_{[c]}([h])=\frac{1}{3}\int_{\mathbb{S}^1}\langle D_s c\times c, h\rangle ds=g^{\operatorname{id}}\left(\frac{1}{3}D_s c\times c, h\right).$$
i.e. there is a 1-form \(\Theta\) s.t. \(\Omega=d\Theta\).
Let's define a 1-form
$$\Theta_{[c]}^{\color{blue}L}([h])\coloneqq g^{\color{blue}L}\left(\frac{1}{3}D_s c\times c, h\right)= \frac{1}{3} \int_{\mathbb{S}^1} \langle D_s c \times c, {\color{blue}L} h\rangle ds $$
and a 2-form $$\Omega^L\coloneqq d\Theta^L$$
Let's define a 1-form
$$\Theta_{[c]}^{\color{blue}L}([h])\coloneqq g^{\color{blue}L}\left(\frac{1}{3}D_s c\times c, h\right)= \frac{1}{3} \int_{\mathbb{S}^1} \langle D_s c \times c, {\color{blue}L} h\rangle ds $$
$$\Omega^L\coloneqq d\Theta^L$$
Does \(\Omega^L\) define a symplectic structure on \(\operatorname{UImm}\)?
with \(\Theta_{[c]}^L([h])\coloneqq \frac{1}{3} \int_{\mathbb{S}^1} \langle D_s c \times c, L h\rangle ds \)
Closeness. OK because it is exact \(d\Omega^L=dd\Theta^L=0\)
$$\Omega^L\coloneqq d\Theta^L$$
Does \(\Omega^L\) define a symplectic structure on \(\operatorname{UImm}\)?
with \(\Theta_{[c]}^L([h])\coloneqq \frac{1}{3} \int_{\mathbb{S}^1} \langle D_s c \times c, L h\rangle ds \)
Closeness. OK because it is exact \(d\Omega^L=dd\Theta^L=0\)
$$\Omega^L\coloneqq d\Theta^L$$
Does \(\Omega^L\) define a symplectic structure on \(\operatorname{UImm}\)?
with \(\Theta_{[c]}^L([h])\coloneqq \frac{1}{3} \int_{\mathbb{S}^1} \langle D_s c \times c, L h\rangle ds \)
Non-degeneracy on \(\operatorname{UImm}\) ?
i.e. \(\ker \Omega_c^L = [0] = \{a. D_s c \mid a \in C^\infty(\mathbb{S}^1)\}\)
Closeness. OK because it is exact \(d\Omega^L=dd\Theta^L=0\)
$$\Omega^L\coloneqq d\Theta^L$$
Does \(\Omega^L\) define a symplectic structure on \(\operatorname{UImm}\)?
Non-degeneracy on \(\operatorname{UImm}\) ?
i.e. \(\ker \Omega_c^L = [0] = \{a. D_s c \mid a \in C^\infty(\mathbb{S}^1)\}\)
Need to check case by case.
with \(\Theta_{[c]}^L([h])\coloneqq \frac{1}{3} \int_{\mathbb{S}^1} \langle D_s c \times c, L h\rangle ds \)
$$\Omega^\lambda\coloneqq d\Theta^\lambda$$
Theorem
With a conformal factor \(\lambda\colon \operatorname{UImm}\to \mathbb{R}_{>0} \),
is a symplectic structure on \(\operatorname{UImm}\)
$$\Omega^\lambda\coloneqq d\Theta^\lambda$$
Theorem
With a conformal factor \(\lambda\colon \operatorname{UImm}\to \mathbb{R}_{>0} \),
is a symplectic structure on \(\operatorname{UImm}\)
if \(\Theta^\lambda\) is NOT invariant under scaling (\(c\to c+t c\) with \(t >0\)).
$$\Omega^\lambda\coloneqq d\Theta^\lambda$$
Theorem
With a conformal factor \(\lambda\colon \operatorname{UImm}\to \mathbb{R}_{>0} \),
is a symplectic structure on \(\operatorname{UImm}\)
If \(\Theta^\lambda\) is invariant under scaling, \(\Omega^\lambda\) is NOT symplectic on \(\operatorname{UImm}\),
but becomes symplectic in another space! (Check out our paper)
if \(\Theta^\lambda\) is NOT invariant under scaling (\(c\to c+t c\) with \(t >0\)).
Is there a non-conformal \(L\) making \(\Omega^L\coloneqq d\Theta^L\) symplectic?
Is there a non-conformal \(L\) making \(\Omega^L\coloneqq d\Theta^L\) symplectic?
Conjecture
Squared curvature \(L|_\theta=1+\kappa^2_c(\theta)\) defines a symplectic structure.
Is there a non-conformal \(L\) making \(\Omega^L\coloneqq d\Theta^L\) symplectic?
Conjecture
Squared curvature \(L|_\theta=1+\kappa^2_c(\theta)\) defines a symplectic structure.
Result in preparation
Squared scale \(L|_\theta=|c(\theta)|^2\) defines a symplectic structure.
Remember, different symplectic structures induce different dynamics \(V_H\) from the same Hamiltonian \(H\).
Remember, different symplectic structures induce different dynamics \(V_H\) from the same Hamiltonian \(H\).
From \(\Omega^\lambda\) with a conformal factor \(\lambda\colon \operatorname{UImm}\to \mathbb{R}_{>0}\), we get
\(V_H\)
(Marsden-Weinstein)
\(\Omega^{\operatorname{id}}\)
\(\Omega^{\operatorname{Length}([c])^{-1/10}}\)
\(\Omega^{\operatorname{Length}([c])^{2}}\)
Hamiltonian dynamics \(V_H\) of total squared-scale $$H([c])=\int_{\mathbb{S}^1}|c|^2 ds$$
\(H\) is preserved in all of them.
Our paper has a disclaimer
We do not guarantee any correctness of (even short-time behavior) dynamics in our simulation
Future work
Symplectic structure on the space of discrete space curves?
Toward a symplectic integrator for space curves.
Our paper has a disclaimer
We do not guarantee any correctness of (even short-time behavior) dynamics in our simulation
The linear Schrödinger equation
$$i\partial_t \psi + \Delta \psi =0$$
The linear Schrödinger equation
$$i\partial_t \psi + \Delta \psi =0$$
is the Hamiltonian flow for $$H(\psi)=\int\frac{1}{2} |\nabla\psi|^2 dx $$
The linear Schrödinger equation
$$i\partial_t \psi + \Delta \psi =0$$
is the Hamiltonian flow for $$H(\psi)=\int\frac{1}{2} |\nabla\psi|^2 dx $$
on the space of wave functions \(X=C^\infty(\mathbb{T}^d,\mathbb{C})\)
$$\Omega_\psi(h,k)=\int \operatorname{Im} h\bar k \ dx\quad \quad h,k \in T_\psi X=C^\infty(\mathbb{T}^d,\mathbb{C}) $$
with a symplectic structure \(\Omega\)
This symplectic structure \(\Omega\) has a Liouville form \(\Theta\)
i.e. \(\Omega=d\Theta\).
This symplectic structure \(\Omega\) has a Liouville form \(\Theta\)
i.e. \(\Omega=d\Theta\).
Can get more symplectic structures by
$$\Omega^L=d\Theta^L$$
with different operators \(L\colon TC^\infty(\mathbb{T}^d,\mathbb{C})\to T C^\infty(\mathbb{T}^d,\mathbb{C})\) ?
This symplectic structure \(\Omega\) has a Liouville form \(\Theta\)
i.e. \(\Omega=d\Theta\).
Can get more symplectic structures by
$$\Omega^L=d\Theta^L$$
with different operators \(L\colon TC^\infty(\mathbb{T}^d,\mathbb{C})\to T C^\infty(\mathbb{T}^d,\mathbb{C})\) ?
Yes, and it has a consequence.
The 2-form $$\Omega_\psi(h,k)=\int \operatorname{Im} h\bar k \ dx$$ has a Liouville form
$$\Theta_\psi(h)= - \frac{1}{2}\int \operatorname{Im} h \bar\psi\ dx$$
Let's apply \(L=1-a_1\Delta+a_2\Delta^2-\cdots \pm a_n \Delta^n\) to \(\Theta\) with \(a_1,\ldots, a_n \geq 0\) to define $$ \Theta^{L}_\psi(h)=\int \operatorname{Im} (1-a_1\Delta+a_2\Delta^2-\cdots \pm a_n \Delta^n) h \bar\psi\ dx$$
Then \(\Omega^L\coloneqq d\Theta^L\) defines a symplectic form!
With \(\Omega^L\) for \(L=1-a_1\Delta-a_2\Delta^2-\cdots - a_n \Delta^n\) we get
$$i\partial_t \psi + (1-a_1\Delta-a_2\Delta^2-\cdots - a_n \Delta^n)^{-1}\Delta \psi =0$$
as the Hamiltonian flow of $$H(\psi)=\int\frac{1}{2} |\nabla\psi|^2 dx $$
Proposition
Family of equations
$$i\partial_t \psi + (1-a_1\Delta+a_2\Delta^2-\cdots \pm a_n \Delta^n)^{\textcolor{red}{-1}}\Delta \psi =0$$
for different choices of coefs \(a_1,\ldots,a_n\geq 0\)
Proposition
Family of equations
$$i\partial_t \psi + (1-a_1\Delta+a_2\Delta^2-\cdots \pm a_n \Delta^n)^{\textcolor{red}{-1}}\Delta \psi =0$$
for different choices of coefs \(a_1,\ldots,a_n\geq 0\) are
the Hamiltonian systems for the same Hamiltonian
$$H(\psi)=\int\frac{1}{2} |\nabla\psi|^2 dx $$
but for different symplectic structures on \(C^\infty(\mathbb{T}^d,\mathbb{C})\).
$$i\partial_t \psi + (1-a_1\Delta+a_2\Delta^2-\cdots \pm a_n \Delta^n)^{-1}\Delta \psi =0$$
are all explicitly solvable.
\(i\partial_t \psi + \Delta \psi =0\)
Schrödinger equation
$$i\partial_t \psi + (1-a_1\Delta+a_2\Delta^2-\cdots \pm a_n \Delta^n)^{-1}\Delta \psi =0$$
are all explicitly solvable.
\(i\partial_t \psi + \Delta \psi =0\)
\(i\partial_t \psi + (1-a_1 \textcolor{blue}{\Delta})^{-1}\Delta \psi =0\)
Schrödinger equation
somewhat blurred?
$$i\partial_t \psi + (1-a_1\Delta+a_2\Delta^2-\cdots \pm a_n \Delta^n)^{-1}\Delta \psi =0$$
are all explicitly solvable.
\(i\partial_t \psi + \Delta \psi =0\)
\(i\partial_t \psi + (1-a_1 \textcolor{blue}{\Delta})^{-1}\Delta \psi =0\)
\(i\partial_t \psi + (1+a_2\textcolor{blue}{ \Delta^2})^{-1}\Delta \psi =0\)
Schrödinger equation
somewhat blurred?
direction reversed!?
$$i\partial_t \psi + (1-a_1\Delta+a_2\Delta^2-\cdots \pm a_n \Delta^n)^{-1}\Delta \psi =0$$
are all explicitly solvable.
$$i\partial_t \psi+ \sqrt{1-\Delta} \ \psi =0$$
Semi-relativistic Schrödinger equation
$$i\partial_t \psi+ \sqrt{1-\Delta} \ \psi =0$$
Semi-relativistic Schrödinger equation
is usually obtained from the standard symplectic structure \(\Omega\) and the modified Hamiltonian
$$\tilde H(\psi)=\sqrt{f(H(\psi)^2)+c^2}$$
with a certain function \(f\) and light speed \(c\).
Can we get the semi-relativistic equation
without changing the Hamiltonian but changing the symplectic structure?
$$i\partial_t \psi+ \sqrt{1-\Delta} \ \psi =0$$
Yes.
And can be obtained as the limit of flows \(\{V_H^n\}_n\) induced from structures \(\{\Omega_n\}_n\),
Yes.
And can be obtained as the limit of flows \(\{V_H^n\}_n\) induced from structures \(\{\Omega_n\}_n\),
$$\Omega^n(h,k)=\int \frac{|\xi|^2}{1+b_1|\xi|^2 - b_2 |\xi|^4 + \ldots \pm b_n |\xi|^{2n}} \operatorname{Im} \mathcal{F}h(\xi) \overline{\mathcal{F}k} (\xi) d\xi$$
with some coefficients \(\{b_i\}_i\).
A method to introduce different symplectic structures.
Consequence
A method to introduce different symplectic structures.
Consequence
A method to introduce different symplectic structures.
Potential applications?
Do the same machinery to find more symplectic structures on other \(\infty\)-dim manifolds.
Toward a paradigm for modeling dynamics by varying not only the Hamiltonian but the geometric (symplectic) structure of state spaces.
Our paper has a disclaimer
We do not guarantee any correctness of (even short-time behavior) dynamics in our simulation
- Space curves: preprint on arXiv 2407.19908
- Wave functions: in-preparation
Sadashige.Ishida@ist.ac.at