Exploring the system-level impacts of urban parcel deliveries using synthetic data
Results from the project H2020 LEAD
Sebastian Hörl
2 March 2023
IRT SystemX
Transport Modeling @ IRT SystemX
Passenger transport
Passenger transport
Transport Modeling @ IRT SystemX
European projects
Social Innovation to foster inclusive cooperative connected and automated mobility
Low-Emission Adaptive last mile logistics supporting on-demand economy through Digital Twins
Data-driven, Integrated, Synchromodal, Collaborative and Optimized urban freight meta-system for new generation of urban logistics and planning
Safe, Efficient and Autonomous: Multimodal Library of European Shortsea and inland Solutions
LEAD Project
Low-emission Adaptive last-mile logistics supporting on-demand economy through Digital Twins
Lyon Living Lab
Modeling methodology
Modeling methodology
Agent-based simulation of Lyon
Modeling methodology
Agent-based simulation of Lyon
Demand in parcel deliveries
Modeling methodology
Agent-based simulation of Lyon
Demand in parcel deliveries
Distribution by operators
Modeling methodology
Agent-based simulation of Lyon
Demand in parcel deliveries
Distribution by operators
KPI Calculation
Population census (RP)
Income data (FiLoSoFi)
Commuting data (RP-MOB)
National HTS (ENTD)
Enterprise census (SIRENE)
OpenStreetMap
GTFS (SYTRAL / SNCF)
Address database (BD-TOPO)
Methodology: Synthetic travel demand
EDGT
Synthetic travel demand has been generated for Lyon in order to perform agent-based mobility simulation of all residents' movements.
0:00 - 8:00
08:30 - 17:00
17:30 - 0:00
0:00 - 9:00
10:00 - 17:30
17:45 - 21:00
22:00 - 0:00
Population census (RP)
Income data (FiLoSoFi)
Commuting data (RP-MOB)
National HTS (ENTD)
Enterprise census (SIRENE)
OpenStreetMap
GTFS (SYTRAL / SNCF)
Address database (BD-TOPO)
Methodology: Synthetic travel demand
EDGT
Synthetic travel demand has been generated for Lyon in order to perform agent-based mobility simulation of all residents' movements.
Methodology: Synthetic travel demand
Open
Data
Open
Software
+
=
Reproducible research
Integrated testing
Population census (RP)
Income data (FiLoSoFi)
Commuting data (RP-MOB)
National HTS (ENTD)
Enterprise census (SIRENE)
OpenStreetMap
GTFS (SYTRAL / SNCF)
Address database (BD-TOPO)
EDGT
Synthetic travel demand has been generated for Lyon in order to perform agent-based mobility simulation of all residents' movements.
Methodology: Synthetic travel demand
Open
Software
=
Reproducible research
Integrated testing
Open
Data
Open
Software
+
=
Reproducible research
Integrated testing
Population census (RP)
Income data (FiLoSoFi)
Commuting data (RP-MOB)
National HTS (ENTD)
Enterprise census (SIRENE)
OpenStreetMap
GTFS (SYTRAL / SNCF)
Address database (BD-TOPO)
EDGT
Synthetic travel demand has been generated for Lyon in order to perform agent-based mobility simulation of all residents' movements.
Methodology: Synthetic travel demand
Methodology: Parcel demand
Synthetic population
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
Methodology: Parcel demand
Synthetic population
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
Methodology: Parcel demand
Synthetic population
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Iterative proportional fitting (IFP)
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Maximum entropy approach
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
First case study
Hörl, S. and J. Puchinger (2022) From synthetic population to parcel demand: Modeling pipeline and case study for last-mile deliveries in Lyon, TRA 2022, Lisbon.
Presence of household members
First case study
Hörl, S. and J. Puchinger (2022) From synthetic population to parcel demand: Modeling pipeline and case study for last-mile deliveries in Lyon, TRA 2022, Lisbon.
JSprit
First case study
Hörl, S. and J. Puchinger (2022) From synthetic population to parcel demand: Modeling pipeline and case study for last-mile deliveries in Lyon, TRA 2022, Lisbon.
Solve VRP-TW based on generated parcels and household presence
JSprit
First case study
Solve VRP-TW based on generated parcels and household presence
JSprit
Hörl, S. and J. Puchinger (2022) From synthetic population to parcel demand: Modeling pipeline and case study for last-mile deliveries in Lyon, TRA 2022, Lisbon.
Methodology: Study area
How many parcels need to be delivered on one day?
Methodology: Study area
Perimeter
Demand
How many parcels need to be delivered on one day?
Methodology: Distribution centers
From where do operators delivery the parcels?
Methodology: Distribution centers
Approach
From where do operators delivery the parcels?
Methodology: Market shares
How many parcels are delivered by each operator?
Methodology: Market shares
How many parcels are delivered by each operator?
Approach
Methodology: Market shares
How many parcels are delivered by each operator?
Methodology: Assignment
How many parcels are delivered by each distribution center?
Methodology: Assignment
How many parcels are delivered by each distribution center?
Approach
Methodology: Assignment
Approach
Outcome
How many parcels are delivered by each distribution center?
Methodology: Cost structures
What influences operators decisions?
Methodology: Cost structures
What influences operators decisions?
Salaries
Vehicles
Distance
Daily cost
+
+
=
Methodology: Cost structures
What influences operators decisions?
Assumption (from grey literature)
Salaries
Vehicles
Distance
Daily cost
+
+
=
Methodology: Cost structures
What influences operators decisions?
Salaries
Distance
Daily cost
+
+
=
Vehicles
Methodology: Cost structures
What influences operators decisions?
Daily cost
=
Salaries
Distance
+
+
Vehicles
Methodology: Cost structures
What influences operators decisions?
Daily cost
=
Salaries
Distance
+
+
Vehicles
Methodology: Cost structures
What influences operators decisions?
Daily cost
=
Salaries
Distance
+
+
Vehicles
Methodology: Cost structures
What influences operators decisions?
Daily cost
=
Salaries
Distance
+
+
Vehicles
Methodology: Optimization
Minimize costs
Methodology: Optimization
Heterogeneous Vehicle Routing Problem
Minimize costs
Methodology: Optimization
Heterogeneous Vehicle Routing Problem
Minimize costs
Data
Solver
Visualisation platform
UCC platform
Discussion & Open questions
Next steps
Questions?