\begin{align*}
\vec r &= (-4\,\hat{\imath}+3\,\hat{\jmath})\ \mathrm{m},
\qquad R=\|\vec r\|=\sqrt{(-4)^2+3^2}=5\ \mathrm{m},\\[2pt]
\omega &= \frac{2\pi}{T}=\frac{2\pi}{10}=0.628\ \mathrm{rad/s},
\qquad \vec\omega=-\,\omega\,\hat{\mathbf k}\ \text{(clockwise)},\\[2pt]
\vec v &= \vec\omega\times\vec r
= (-\omega\hat{\mathbf k})\times(-4\,\hat{\imath}+3\,\hat{\jmath})
= 3\omega\,\hat{\imath}+4\omega\,\hat{\jmath}\\[2pt]
&= 3(0.628)\,\hat{\imath}+4(0.628)\,\hat{\jmath}
\approx \boxed{\,1.9\,\hat{\imath}+2.5\,\hat{\jmath}\ \mathrm{m/s}\,}.
\end{align*}