\text{A proton moving with a velocity $\overrightarrow{\boldsymbol{v}}=3.80 \times 10^6 \mathrm{~m} / \mathrm{s}\hspace{1mm} \hat{\boldsymbol{i}}$ enters a region $(x \geq 0)$ containing }
\text{a uniform electric field $\overrightarrow{\boldsymbol{E}}=-5.60 \times 10^4 \mathrm{~N} / \mathrm{C} \hspace{1mm}\hat{\boldsymbol{i}}$. How far will the proton travel in this region }
\text{A proton moving with a velocity $\overrightarrow{\boldsymbol{v}}=3.80 \times 10^6 \mathrm{~m} / \mathrm{s}\hspace{1mm} \hat{\boldsymbol{i}}$ enters a region $(x \geq 0)$ containing }
\text{a uniform electric field $\overrightarrow{\boldsymbol{E}}=-5.60 \times 10^4 \mathrm{~N} / \mathrm{C} \hspace{1mm}\hat{\boldsymbol{i}}$. How far will the proton travel in this region }
\text{before it momentarily stops?}
\text{Two identical conducting spheres $A$ and $B$ carry charge $Q_A=+2 Q$ and $Q_B=-3 Q$. They }
\text{are separated by a distance much larger than their diameters. The magnitude of the initial }
\text{electrostatic force between spheres A and B is F. A third, identical uncharged conducting }
\text{sphere $\mathrm{C}$ is first touched to $\mathrm{A}$, then to $\mathrm{B}$, and finally removed.}
\text{As a result, the magnitude of the electrostatic force between A and B after touching is:}
\text{A) $F / 6$}
\text{B) $F / 4$}
\text{C) $\mathrm{F} / 3$}
\text{D) 3 F}
\text{E) 2 F}
\text{Two identical conducting spheres $A$ and $B$ carry charge $Q_A=+2 Q$ and $Q_B=-3 Q$. They }
\text{are separated by a distance much larger than their diameters. The magnitude of the initial }
\text{electrostatic force between spheres A and B is F. A third, identical uncharged conducting }
\text{sphere $\mathrm{C}$ is first touched to $\mathrm{A}$, then to $\mathrm{B}$, and finally removed.}
\text{As a result, the magnitude of the electrostatic force between A and B after touching is:}
\text{Two charges $\mathrm{q}_1=+6.00 \hspace{1mm}\mu \mathrm{C}$ and $\mathrm{q}_2=-12.0\hspace{1mm} \mu \mathrm{C}$ are placed at $(-2.00 \mathrm{~cm}, 0)$ and $(4.00$ $\mathrm{cm}, 0)$,}
\text{respectively. If a third unknown charge $\mathrm{q}_3$ is to be located such that the net force on it from }
\text{charges $\mathrm{q}_1$ and $\mathrm{q}_2$ is zero, what must be the coordinates of $\mathrm{q}_3$ ?}
\cdot
\cdot
\cdot
q_1=+6
q_3
q_2=-12
4
-2
x
\text{A) $(-16.5 \mathrm{~cm}, 0)$}
\text{C) $(2.49 \mathrm{~cm}, 0)$}
\text{B) $(-14.5 \mathrm{~cm}, 0)$}
\text{D) $(0,0)$}
\text{E) $(-6.50 \mathrm{~cm}, 0)$}
\text{respectively. If a third unknown charge $\mathrm{q}_3$ is to be located such that the net force on it from }
\text{charges $\mathrm{q}_1$ and $\mathrm{q}_2$ is zero, what must be the coordinates of $\mathrm{q}_3$ ?}
\text{Only $x=-\frac{2\sqrt{2}+4}{\sqrt{2}-1}=-16.48$ is accepted because negative}
\text{(the other one does not fulfill the stability condition )}
\text{We can have equilibrium only if $q_3$ is at the left}
\text{Two charges $\mathrm{q}_1=+6.00 \hspace{1mm}\mu \mathrm{C}$ and $\mathrm{q}_2=-12.0\hspace{1mm} \mu \mathrm{C}$ are placed at $(-2.00 \mathrm{~cm}, 0)$ and $(4.00$ $\mathrm{cm}, 0)$,}
\text{(x represents here the position)}
\text{An electric dipole is placed in a uniform electric field $\vec{E}=(4000 \hat{i}) N / C$. What is the change }\\
\text{in dipole's potential energy if the initial and the final electric dipole moments $\vec{p}_i$ and $\vec{p}_\text{f}$ }
\text{An electron is shot (ejected) at an initial speed of $3.0 \times 10^4 \mathrm{~m} / \mathrm{s}$ at an angle of $45^{\circ}$ relative }
\text{to the positive x-axis, as shown in FIGURE 3. At time $t=0$, the electron enters a region of }
\text{uniform electric field $\overrightarrow{\mathbf{E}}=2.0 \times 10^{-6} \hat{\mathbf{j}}(\mathrm{N} / \mathrm{C})$. Find the velocity of the electron along y-axis at}
\text{$t=1.0 \mathrm{~s}$. Ignore gravity.}
45^0
\vec{E}
x
y
\cdot
e
\vec{v}
-
\text{An electron is shot (ejected) at an initial speed of $3.0 \times 10^4 \mathrm{~m} / \mathrm{s}$ at an angle of $45^{\circ}$ relative }
\text{to the positive x-axis, as shown in FIGURE 3. At time $t=0$, the electron enters a region of }
\text{uniform electric field $\overrightarrow{\mathbf{E}}=2.0 \times 10^{-6} \hat{\mathbf{j}}(\mathrm{N} / \mathrm{C})$. Find the velocity of the electron along y-axis at}