\begin{aligned}
& \Gamma(z)=\lim _{n \rightarrow \infty} \frac{1 \cdot 2 \cdot 3 \cdots n}{z(z+1)(z+2) \cdots(z+n)} n^z \quad, z \neq 0,-1,-2, \ldots \\
& \text { consider }\\
&\Gamma(z+1)=\lim _{n \rightarrow \infty} \frac{1 \cdot 2 \cdot 3 \cdots n}{(z+1)(z+2)(z+3) \cdots(z+n+1)} n^{z+1}= \\
& =\lim _{n \rightarrow \infty} \frac{n z}{z+n+1} \cdot \frac{1 \cdot 2 \cdot 3 \cdots n}{z(z+1) \cdots(z+n)} n^z=z \Gamma(z) \\
&
\end{aligned}