\text{Two runners Roger and Abbot are running on a straight track along $x$ axis from $t=0$ to $t=t_f$. Abbot runs }
\text{throughout the interval $t=0$ to $t=t_f$ at a constant speed $v_{\mathrm{Abbot}}$, while Roger has a velocity that depends}
\text{upon time as shown in Figure $2\left(t_{\max } \neq t_f / 2\right)$. Both the runners travelled the same displacement during the }
\text{time interval. What is the relation between $v_{\mathrm{Abbot}}$ and $v_{\max }$. }
{\text{A) $v_{A b b o t}=v_{\max } /2$}}\\
\text{B) $v_{\text {Abbot }}=v_{\text {max }}$}\\
\text{C) $v_{A b b o t}=2 v_{\max }$}\\
\text{ \hspace{.3cm} D) $v_{\text {Abbot }}=3 v_{\max } / 2$}\\
\text{E) $v_{A b b o t}=v_{\max } / 3$}\\
\text{Two runners Roger and Abbot are running on a straight track along $x$ axis from $t=0$ to $t=t_f$. Abbot runs }
\text{throughout the interval $t=0$ to $t=t_f$ at a constant speed $v_{\mathrm{Abbot}}$, while Roger has a velocity that depends}
\text{upon time as shown in Figure $2\left(t_{\max } \neq t_f / 2\right)$. Both the runners travelled the same displacement during the }
\text{time interval. What is the relation between $v_{\mathrm{Abbot}}$ and $v_{\max }$. }
\underline{\text{A) $v_{A b b o t}=v_{\max } /2$}}\\
\text{B) $v_{\text {Abbot }}=v_{\text {max }}$}\\
\text{C) $v_{A b b o t}=2 v_{\max }$}\\
\text{ \hspace{.3cm} D) $v_{\text {Abbot }}=3 v_{\max } / 2$}\\
\text{E) $v_{A b b o t}=v_{\max } / 3$}\\
\text{The distance BD is therefore: } BD=\sqrt{26.8^2+11.8^2}=29.3
\text{(Important for exam)}
\text{ }\\
\text{Vector $\vec{A}$ has a magnitude of 3.0 units. Vector $\vec{B}$ has a magnitude of $\mathrm{B}$ units. }\\
\text{Find the magnitude B if the magnitude of $\vec{A} \times \vec{B}$ is 4.0 units and $\vec{A} \cdot \vec{B}=3.0$ units.}
\text{ }\\
\text{Vector $\vec{A}$ has a magnitude of 3.0 units. Vector $\vec{B}$ has a magnitude of $\mathrm{B}$ units. }\\
\text{Find the magnitude B if the magnitude of $\vec{A} \times \vec{B}$ is 4.0 units and $\vec{A} \cdot \vec{B}=3.0$ units.}