Overview
Technical Details
Our Team
Simple task
Nuclei segmentation
Train
Test
Input images sample variability
Differing Saliency
Varying shape and size
Varying level of nuclei attachment
Pipeline
Input image
Preprocessing
Morphological pooling
Watershed ensemble generation
Thresholding
Morphological ensemble generation
Watershed pooling
Segmented mask
Preprocessing
Hematoxylin
Eosin
Background
Color deconvolution
Pipeline
Preprocessing
Hematoxylin
Eosin
Background
Hematoxylin Channel Extraction
Color deconvolution
Pipeline
Preprocessing
Reinhard's Color Normalization
References:
Target image
Pipeline
Preprocessing
Hematoxylin Channel Extraction
Reinhard's Color Normalization
Target image
Pipeline
Thresholding
Possible algorithms:
Fuzzy c-means clustering
Gaussian mixture models
2. With spatial information
1. No spatial information
Fast spatial distance weighted Fuzzy c-means clustering
Dictionary model
References:
Pipeline
Thresholding
K-means clustering
Parameters:
Models
input
color clusters
1
6
5
4
3
2
Pipeline
Thresholding
input
color clusters
top 3
most intensive clusters sum
1
6
5
4
3
2
4+5+6
K-means clustering
Parameters:
Models
Pipeline
Thresholding
Gaussian Mixture Model
Parameters:
Models
References:
Pipeline
Thresholding
Spatial distance weighted fuzzy c-means clustering
Parameters:
Models
cluster center
spatial distance weighted funcion
weighted distance
membership probabilty
objective function
References:
Pipeline
Thresholding
Dictionary model
References:
Learning:
Segmentation:
Pipeline
Thresholding
Parameters:
Models
References:
Dictionary model
Pipeline
Thresholding
Reality is far from perfect:
Pipeline
Thresholding
Operations:
Morphological Transformations
Pipeline
Thresholding
Operations:
Morphological Transformations
Problems:
Pipeline
Morphological ensemble generation
k-means(3,1)
k-means(4,2)
SDWFCM(3,2,2,0.9,24)
1
2
r
Morphological ensemble
Pipeline
k-means(3,1)
k-means(4,2)
SDWFCM(3,2,2,0.9,24)
1
2
r
Morphological ensemble
Morphological pooling
probabilty map
Pipeline
k-means(3,1)
k-means(4,2)
SDWFCM(3,2,2,0.9,24)
1
2
r
Morphological ensemble
k-means clustering
Morphological pooling
probabilty map
Pipeline
nuclei detachment
Watershed ensemble generation
Watershed algorithm
Pipeline
nuclei detachment
Watershed ensemble generation
Watershed algorithm
Problems:
Pipeline
Watershed ensemble generation
watershed realizations
thresholding output
Pipeline
Watershed ensemble generation
watershed realizations
thresholding output
edge realizations
Pipeline
Watershed pooling
probability map
thresholding output
edge realizations
Pipeline
Watershed pooling
probability map
thresholding output
modified thresholding output
overimpose
edge realizations
Pipeline
Watershed pooling
probability map
thresholding output
modified thresholding output
final segmentation mask
watershed
overimpose
edge realizations
Pipeline
Grzegorz Żurek
R&D Stermedia
Wroclaw University of Technology
Jakub Czakon
R&D Stermedia
Piotr Giedziun
R&D Stermedia
Ph.D Witold Dyrka
R&D Stermedia
Wroclaw University of Technology
Piotr Krajewski
CIO Stermedia
Michał Błach
R&D Stermedia
Wroclaw University of Technology
MD Łukasz Fuławka
Patomorphology resident
Lower Silesian Oncology Center
Contact us
info@stermedia.pl
jakub.czakon@stermedia.pl
grzegorz.zurek@stermedia.pl