Week 12 Report
b02901085 徐瑞陽
b02901054 方為
LSTM captures local compositions (the way neighboring words are combined semantically and syntatically
Given a review text about a target entity (laptop, restaurant, etc.),
identify the following information:
Given a set of customer reviews about a target entity (ex. a restaurant), identify a set of {aspect, polarity} tuples that summarize the opinions expressed in each review.
Test system in a previously unseen domain (hotel reviews in SemEval 2015) for which no training data was made available. The gold annotations for Slots 1 and 2 were provided and the teams had to return the sentiment polarity values (Slot 3).
Experiment setting
4 hidden layer :
[2000 , 1000 , 256 , 64] (restaurant_train) 12 category
[2048 , 1000 , 256 , 128] (laptop_train) 81 category
(dropout rate rate : 0.2 , 0.2 , 0.2 , 0.8)
learning rate : 0.0001
num_epoch : 20
activation function : RELU ; last layer : softmax
Batchsize : 250 (shuffle)
update : nesterov momentum
loss function : cross entropy
(For slot1)
restaurant_train : 34.5 % (12 category)
laptop_train : 21 % (81 category)
Somehow auto-encoder encode some message
but the performance is poor ...
(2015 baseline : 48.06% )
(2015 baseline : 51.32% )
Using Auto-encoder
Using tgrocery (text classification tool based on SVM)
laptop_train : 39 % (81 category)
Find the keyword , means we can find the correct category
restaurant_train : 54 % (12 category)
(2015 baseline : 51.32% )
(2015 baseline : 48.06% )
(For slot3)
Experiment setting
2 hidden layer :
[256 , 32 ]
(dropout rate rate : 0.8 , 0.8 )
learning rate : 0.0001
num_epoch : 20
activation function : RELU ; last layer : softmax
Batchsize : 250 (shuffle)
update : nesterov momentum
loss function : cross entropy
restaurant_train : 64 %
laptop_train : 54 %
Somehow auto-encoder encode some "sentiment" message
Using Auto-encoder
Using SVM
restaurant_train : 60 %
laptop_train : 72 %
(2015 baseline : 69.96% )
(2015 baseline : 63.55% )