Table
Values
Prover
Pre-computed
Pre-computed in \(\mathcal{O}(N\text{log}N)\)
Compute \(\textcolor{orange}{[m]_1}\) given multiplicities \(\{m_j\}_{j\in[n]}\)
Generate \(\beta \leftarrow \mathbb{F}\)
Define \(A_i = \frac{m_i}{\beta + t_i} \ \forall i\in [N]\) and compute \(\textcolor{orange}{[A]_1}\)
Compute \(\textcolor{orange}{[Q_A]_1} = \sum_{i\in[N], A_i\neq 0}A_i\cdot \textcolor{lightgreen}{[Q_i]_1}\)
Define \(B_i = \frac{1}{\beta + f_i} \ \forall i\in [n]\) and compute \(\textcolor{orange}{[B]_1}\)
Compute \(Q_B(X) = \frac{B(X)(f(X) + \beta) - 1}{\textcolor{grey}{Z_{\mathbb{H}}(X)}},\) compute \(\textcolor{orange}{[Q_B]_1}\)
Generate \(\gamma\leftarrow \mathbb{F}\)
\(^* \text{T } \& \text{ C apply.}\)